• Title/Summary/Keyword: damage potential

Search Result 1,833, Processing Time 0.025 seconds

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

THE EFFECT OF GENISTEIN CONCENTRATED POLYSACCHARIDE (GCP) SUPPLEMENTATION ON OXIDATIVE DNA DAMAGE AND PLASMA TOTAL ANTIOXIDANT POTENTIAL IN OLD FEMALE SPRAGUE-DAWLEY RATS.

  • Park, Eunju;Shin, Jang-In;Park, Ok-Jin;Kang, Myung-Hee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.118-119
    • /
    • 2001
  • The anti-cardiovascular effect of estrogen replacement therapy in postmenopausal women is known to be associated with its role as an antioxidant, its ability to protect cells from DNA damage. Genistein concentrated polysaccharide (GCP) is a functional food produced by fermentation of soybean isoflavone extracts with Basidiomycetes, containing rich content of genistein aglycones. The aim of this study was to investigate the effect of GCP on oxidative DNA damage and plasma total antioxidant potential, comparing to the effect of estrogen.(omitted)

  • PDF

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC (고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

An Analysis of Agricultural Landuse Suitability Using Landuse Limitation Factors - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do - (토지이용 제한인자를 활용한 농업적 토지이용 적합성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Jang, Gab-Sue;Park, In-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.357-372
    • /
    • 2006
  • The excessive land activities in farming can cause soil erosion, inundation by a flood, and fallow. So far land evaluation has been analyzed using the land use limitation derived from the excessive land activities. This study was done for evaluating the agricultural fields by using 3 land use limitations, inundation potential, soil erodibility potential, and fallow potential. The study area is Ibang-myeon, Changnyeong-gun, Gyeongnam-province, Korea. A logistic regression model was applied to recognize the inundation potential by a flood in the Nakdong river basin. And potential soil erodibility index (PSEI) was derived from USLE model to analyze the soil erodibility potential. And a probability model from a logistic regression model was applied to detect the fallow potential. Therefore, we found 220.7ha for the 4th grade and 86.1ha for the 5th grade was analyzed as water damage potential. Large area near Nakdong river have problem to grow the rice due to the damage by water inundation. And 213.6ha for the 3rd grade and 103.3ha for 4th grade was detected as a result of the analysis of soil erosion potential. The soil erosion potential was high when within-field integrity of soil was not stable, or the kinetic energy was high or the slope length was long due to a steep slope of a specific land. And 869.1ha for 3rd grade, 174.9ha for 4th grade, and 110.6ha for 5th grade was detected to be distributed having the fallow potential. Especially, a village, having a steep mountain, had 249.5ha for the 3rd grade, which was 28.7% of total area showing the 3rd grade. Finally, Three villages, including An-ri, Geonam-ri, Songgok-ri, showed they had largest area of the suitable land in the study area. These villages had similar topographic condition where they were far from Nakdong river, and they had relatively higher elevation and flat lands.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

Lycopene-Induced Hydroxyl Radical Causes Oxidative DNA Damage in Escherichia coli

  • Lee, Wonyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1232-1237
    • /
    • 2014
  • Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ($^*OH$)-which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing $^*OH$-mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.

Investigation on PVDE & PZT Sensor Signals for the Low-Velocity Impact Damage of Gr/Ep Composite Laminates (복합적층판의 저속충격손상에 따른 PZT 센서와 PVDF 센서의 신호 분석)

  • 이홍영;김진원;최정민;김인걸
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.125-128
    • /
    • 2003
  • Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden inside and cannot be detected by visual inspection. The piezoelectric thin film sensor can be used to detect variations in structural and material properties for structural health monitoring. In this paper, the PVDF and PZT sensors were used for monitoring impact damage initiation in Gr/Ep composite panel to illustrate this potential benefit. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The wavelet transform(WT) is used to decompose the piezoelectric sensor signals in this study. Test results show that the particular waveform of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. And it is found that both PZT and PVDF sensors can be used to detect the impact damage.

  • PDF