• 제목/요약/키워드: damage plastic

검색결과 821건 처리시간 0.022초

원지반의 암반조건과 시공으로 인한 손상을 고려한 터널주변 탄·소성영역의 산정 (Estimation of elastic and plastic zones near a tunnel considering in situ rock mass conditions and the damage induced by excavation)

  • 사공명;백규호
    • 한국터널지하공간학회 논문집
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2004
  • 터널의 시공은 터널주변 지반에 구조적인 손상과 시공상의 손상을 불러일으킨다. 여기서의 구조적인 손상이란 터널굴착으로 인한 원지반응력의 교란으로 인하여 발생하는 것을 의미하며, 시공상의 손상이란 시공방법에 따른 주변지반의 손상을 의미한다. 본 논문에서는 원지반의 특성과 시공 중 손상을 고려할 수 있는 Hoek과 Brown 2002년도 공식을 이용하여 터널주변 탄 소성 영역에 작용하는 접선 및 반경방향의 응력 산정을 위한 식과 터널 주변 소성영역의 산정방법이 제시되었다. 또한, 매개변수분석을 통하여 암반의 등급, 무결암의 일축압축강도, 그리고 터널의 크기와 소성영역간의 상관관계를 조사하였으며, 기존의 연구에서 제안된 방법과의 비교를 통하여 본 연구에서 제안된 방법의 정확도를 검증하였다.

  • PDF

A correction method for objective seismic damage index of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.741-748
    • /
    • 2018
  • In this paper, the sensitivity of a plastic-damage-based structural damage index on mesh density is studied. Multiple finite element meshes with increasing density are used to investigate their effect on the damage index values calculated from nonlinear finite element simulations for a reinforced concrete column subjected to cyclic loading. With the simulation results, this paper suggests a correction method for the objective damage index based on nonlinear regression of volumetric tensile damage ratio data. The modified damage index values are presented in the quasi-static cyclic simulation to show the efficacy of the suggested correction method.

반복재하를 받는 각형강관기둥의 손상에 관한 연구 (A Study on the Damage of Steel Square Tubular Columns under Cyclic Loading)

  • 박연수;전동호;서병철;김욱;최동호
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.369-378
    • /
    • 2003
  • 본 연구에서는 강부재에서의 손상지수를 제시하여 반복하중재하를 받는 각형강관 기둥의 파괴에 이르는 과정을 손상지수를 이용하여 규명하였다. 이를 위해 유한요소 프로그램을 이용하여 비선형 해석을 수행하였고 이에 대한 손상과정을 비교 분석하였다. 재료시험을 실시하여 재료물성치와 강종별 변형률특성을 구하였으며 이를 바탕으로 강종과 하중재하조건의 변수를 주어 이 인자들이 부재의 손상에 미치는 영향을 비교하였다. 각 변수에 따른 변형률 특성과 누적소성변형률 이력곡선을 바탕으로 하는 하중조건과 강종이 손상에 미치는 영향을 정량적으로 파악할 수 있었다.

A Plastic-Damage Model for Lightweight Concrete and Normal Weight Concrete

  • Koh, C.G.;Teng, M.Q.;Wee, T.H.
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.123-136
    • /
    • 2008
  • A new plastic-damage constitutive model applicable to lightweight concrete (LWC) and normal weight concrete (NWC) is proposed in this paper based on both continuum damage mechanics and plasticity theories. Two damage variables are used to represent tensile and compressive damage independently. The effective stress is computed in the Drucker-Prager multi-surface plasticity framework. The stress is then computed by multiplication of the damaged part and the effective part. The proposed model is coded as a user material subroutine and incorporated in a finite element analysis software. The constitutive integration algorithm is implemented by adopting the operator split involving elastic predictor, plastic corrector and damage corrector. The numerical study shows that the algorithm is efficient and robust in the finite element analysis. Experimental investigation is conducted to verify the proposed model involving both static and dynamic tests. The very good agreement between the numerical results and experimental results demonstrates the capability of the proposed model to capture the behaviors of LWC and NWC structures for static and impact loading.

Seismic damage of long span steel tower suspension bridge considering strong aftershocks

  • Xie, X.;Lin, G.;Duan, Y.F.;Zhao, J.L.;Wang, R.Z.
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.767-781
    • /
    • 2012
  • The residual capacity against collapse of a main shock-damaged bridge can be coupled with the aftershock ground motion hazard to make an objective decision on its probability of collapse in aftershocks. In this paper, a steel tower suspension bridge with a main span of 2000 m is adopted for a case-study. Seismic responses of the bridge in longitudinal and transversal directions are analyzed using dynamic elasto-plastic finite displacement theory. The analysis is conducted in two stages: main shock and aftershocks. The ability of the main shock-damaged bridge to resist aftershocks is discussed. Results show that the damage caused by accumulated plastic strain can be ignored in the long-span suspension bridge. And under longitudinal and transversal seismic excitations, the damage is prone to occur at higher positions of the tower and the shaft-beam junctions. When aftershocks are not large enough to cause plastic strain in the structure, the aftershock excitation can be ignored in the seismic damage analysis of the bridge. It is also found that the assessment of seismic damage can be determined by superposition of damage under independent action of seismic excitations.

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석 (Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings)

  • 고현무;이지호;정우영;조호현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

콘크리트 댐의 비선형 지진해석에서의 유한요소망 영향 (Finite Element Mesh Dependency in Nonlinear Earthquake Analysis of Concrete Dams)

  • 이지호
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.637-644
    • /
    • 2001
  • 본 논문에서는 콘크리트 댐체의 균열 발생 및 진전해석을 포함하는 비선형 지진해석에서 유한요소망 의존성을 제거시키고 안정적인 해를 얻기 위하여 균열모형으로 사용되는 소성손상모형 및 손상역학모형을 duvaut-lions모형에 기초한 점소성모형으로 정규화하는 방법을 기술하였다. 제안된 방법으로 정규화된 소성손상모형과 그렇지 않은 소성손상모형를 이용하여 지진하중을 받는 콘크리트 댐체의 동적 손상해석을 수행하여 여러 형태의 유한요소망이 해석결과에 미치는 영향을 분석하였다. 해석결과로부터 정규화한 소성손상모형은 유한요소망의 크기 및 배열에 영향을 크게 받지 않고 객관적이며 안정적인 해를 계산하는 반면, 정규화되지 않은 균열모형은 요소망에 의존적인 불안정한 결과를 산출함을 관찰할 수 있었다.

Elasto-plastic damage modelling of beams and columns with mechanical degradation

  • Erkmen, R. Emre;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.315-323
    • /
    • 2017
  • Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases.

열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중 (Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite)

  • 윤수진;김기근
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.