• Title/Summary/Keyword: damage modes

Search Result 315, Processing Time 0.032 seconds

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

A Method of Lamb-Wave Modes Decomposition for Structural Health Monitoring (구조물 건전성 모니터링을 위한 Lamb파 모드 구별법)

  • Jun, Yong-Ju;Park, Il-Wook;Lee, U-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.887-895
    • /
    • 2012
  • Lamb waves have received a great attention in the structural health monitoring (SHM) societies because they can propagate over relatively large distances in wave guides such as thin plates and shells. The time-of-flights of Lamb waves can be used to detect damages in a wave guide. However, due to the inherent dispersive and multi-mode characteristics of Lamb waves, one must decompose the Lamb wave modes into the symmetric and anti-symmetric modes for SHM applications. Thus, this paper proposes a decomposition method for the two-mode Lamb waves based on two rules: the group velocity ratio rule and the mode amplitude ratio rule. The group velocity ratio rule means that the ratio of the group velocities of fundamental symmetric and anti-symmetric modes is constant, while the mode amplitude ratio rule means that the magnitude of the fundamental symmetric modes of all measured response signals should be always larger than those of the anti-symmetric mode once the input signal is applied so that the magnitude of fundamental symmetric mode of excited Lamb-wave is larger than that of anti-symmetric mode, and vice versa. The proposed method is verified through the experiments ducted for an aluminum plate specimen.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

Damage Analysis of RC Beams Subjected to Blast Load Using P-I Diagram (P-I 곡선을 이용한 충격압력하중을 받는 철근 콘크리트 보의 손상해석)

  • Cho, Jung-Hee;Nam, Jin-Won;Kim, Ho-Jin;Choi, Hyung-Jin;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.438-441
    • /
    • 2006
  • Since the behavior of structural members subjected to blast load shows different responses, the effect of impulse as well as peak load should be considered in the damage analysis. The threshold on P-I diagram that causes specific damage level divides the diagram into the failure zone and the non-failure zones. In this study, numerical analysis is performed based on single-degree-of-freedom (SDOF) techniques to generate rational P-I diagram considering material non-linearity and dual failure modes (flexure and direct shear) of RC beams. From the comparison with existing test results it is concluded that proposed numerical method is good to derive failure mode of RC beam under blast load.

  • PDF

Damage Detection of Truss Structures Using Parametric Projection Filter Theory (파라메트릭 사양필터를 이용한 트러스 구조물의 손상 검출)

  • Mun, Hyo-Jun;Suh, Ill-Gyo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.29-36
    • /
    • 2004
  • In this paper, a study of damage detection for 2-Dimensional Truss Structures using the parametric projection filter theory is presented. Many researchers are interested in inverse problem and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In filtering algorithm, the Kalman filtering algorithm is well known and have been applied to many kind of inverse problems. In this paper, the Parametric projection filtering in conjunction with structural analysis is applied to the identification of damages in 2-D truss structures. The natural frequency and modes of damaged truss model are adopted as the measurement data. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

Dutile Regime Parallel Grinding of BK7 (BK7의 평행축 연성모드 연삭가공)

  • Lee, Hyeon-Sung;Kim, Min-Jae;Koo, Hal-Bon;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.85-89
    • /
    • 2012
  • Conventional grinding of BK7 glass will normally result in brittle fracture at the surface, generating severe sub-surface damage and poor surface finish. The precision grinding of BK7 glass in parallel grinding modes has been investigated. Grinding process, maximum chip thickness, ductile/brittle regime, surface roughness and sub-surface damage have been addressed. Special attention has been given to the condition for generating a ductile mode response on the ground surface. Experiments reveal that the level of surface roughness and depth of sub-surface damage vary differently for different condition. This study gives an indication of the strategy to follow to achieve high quality ground surfaces on brittle materials.

Performance of rotational mode based indices in identification of added mass in beams

  • Rajendrana, Prakash;Srinivasan, Sivakumar M.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.711-723
    • /
    • 2015
  • This study investigates the identification of added mass and its location in the glass fiber reinforced polymer (GFRP) beam structures. The main emphasis of this paper is to ascertain the importance of inclusion of rotational degrees of freedom (dofs) in the introduction of added mass or damage identification. Two identification indices that include the rotational dofs have been introduced in this paper: the modal force index (MFI) and the modal rotational curvature index (MRCI). The MFI amplifies damage signature using undamaged numerical stiffness matrix which is related to changes in the altered mode shapes from the original mode shapes. The MRCI is obtained by using a higher derivative of rotational mode shapes. Experimental and numerical results are compared with the existing methods leading to a conclusion that the contributions of the rotational modes play a key role in the identification of added mass. The authors believe that the similar results are likely in the case of damage identification also.