• 제목/요약/키워드: damage evolution equation

검색결과 19건 처리시간 0.023초

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

등가탄성에너지법에 의한 콘크리트의 연속체 손상모델 (Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy)

  • 이기성;변근주;송하원
    • 콘크리트학회지
    • /
    • 제7권5호
    • /
    • pp.172-178
    • /
    • 1995
  • 콘크리트는 타설시부터 수많은 미세균열을 가지고 있으며, 이러한 미세균열등이 성장하고 전파되어 결국에는 콘크리트가 파괴된다. 이러한 일련의 과정을 손상이라 한다. 손상은 주로 2차 텐서로 표현되며 균열은 연속체적 현상으로 취급된다. 본 논문에서는 손상의 특성을 유효응력개념과 함께 등가탄성에너지법을 이용하여 나타내었으며, Helmholtz 자유에너지와 소산 포텐셜을 이용하여 손상모델의 손상전개와 구성방정식을 유도하였다. 구성방정식은 콘크리트의 탄성, 이방성 손상과 소성의 영향을 포함하도록 하였다. 두 가지 형태의 유효접선강성텐를 사용하였는데, 하나는 탄성-손상의 영향에 의한 것이며 다른 하나는 소성-손상의 영향에 의한 것이다. 모델을 검증하기 위하여 일축과 이축의 하중을 받는 콘크리트 요소에 대하여 유한요소해석을 하였으며 그 결과를 실험결과와 비교하였다.

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

콘크리트의 탄-소성 이방성-손상 모델 (Elasto-Plastic Anisotropic-Damage Model for Concrete)

  • 이기성;송하원
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.65-76
    • /
    • 1996
  • 콘크리트의 미세공극 혹은 미세균열의 발생과 성장은 콘크리트의 점차적인 물성 저하를 야기한다. 이와같은 손상은 이방성을 가지며 소성과 함께 콘크리트의 비선형거동을 일으키는 주요원인이 된다. 본 논문은 콘크리트의 탄소성 변형 및 손상을 고려하여 콘크리트의 이방성 손상거동을 해석할 수 있는 콘크리트 연속체 손상모델의 개발에 관한 연구이다. 등가 탄성 에너지원리를 이용하여 이방 손상텐서로 표현된 유효탄성텐서를 구하고, 이를 포함하고 있는 열역학 법칙의 자유에너지함수와 소산포텐셜로부터 손상의 전개법칙을 유도한 후, 손상에너지해방률의 함수로 표현한 손상면을 적용하므로써 콘크리트의 이상성손상을 효율적으로 해석 할 수 있는 구성방정식을 유도하였다. 또한 이방성 손상모델에 콘크리트의 소성모델을 도입시켜 탄소성 변형 및 손상을 함께 고려할 수 있는 콘크리트의 연속체 손상모델을 개발하였다. 개발된 손상모델을 유한요소해석 프로그램에 적용하여 1축 및 2축의 여러 조합응력을 받는 콘크리트 모형을 유한요소해석하였으며, 실험결과 또는 타 모델과의 비교로부터 손상모델의 타당성을 검증하였다.

  • PDF

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

비국부 이론을 이용한 입자 강화 복합재 이중후방응력 소성 구성방정식 모델 및 전단밴드 분석 (Non-Local Plasticity Constitutive Relation for Particulate Composite Material Using Combined Back-Stress Model and Shear Band Formation)

  • 윤수진;김신회;박재범;정규동
    • 대한기계학회논문집A
    • /
    • 제38권10호
    • /
    • pp.1057-1068
    • /
    • 2014
  • 2개의 상으로 구성된 입자 강화 복합재에 대한 균질화와 내부 상태 변수에 대해 2차 미분항이 포함된 비구역적 이론을 적용하여 탄소성 구성 방정식을 제안하였다. 열역학과 소성 포텐셜을 통해 내부 상태 변수에 대한 전개식 또한 본 논문에 포함되었다. 연속체 결함 모델을 이용, 결함 인자에 따른 물성 저하 현상도 감안되었으며 이중 후방응력이 조합된 전개식 또한 제시하였다. 일부 예에 대한 수치해석 결과, 비구역적 변수의 영향이 증가할수록 전단밴드는 감소하나 반면 특정 후방응력 전개가 지배적일수록 소성변형 집중이 증가함이 관찰되었다. 더욱이 두 개의 강소성 상으로 이루어진 복합재의 경우 강성이 높은 게재물의 비중이 증가함에 따라 전단밴드 형성이 용이한 것으로 나타났다. 그 밖에 제어변수들의 변화에 따른 전단밴드 형성에 대한 분석 결과는 Rice 소성 불안정성 분석결과와 잘 일치함 또한 밝혀졌다.