• 제목/요약/키워드: damage evaluation system

검색결과 642건 처리시간 0.029초

알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가 (Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics)

  • 이준현;이진경;송상헌
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

유한요소해석을 통한 진동 감쇠형 와이어웨이시스템의 내진성능 검증 (Seismic Performance Evaluation of Vibration Attenuation Wireway-Pulley System Using the FE Analysis)

  • 트란 반 한;진수민;김성찬;차지현;신지욱;이기학
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.185-192
    • /
    • 2020
  • A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

면진된 비상디젤발전기의 지진위험도 평가 (Seismic Risk Evaluation of Isolated Emergency Diesel Generator System)

  • 김민규;대조정수;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.217-222
    • /
    • 2007
  • An Emergency Diesel Generator (EDG) is one of the safety related equipments of a Nuclear Power Plant. The seismic capacity of an EDG in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to a pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. This study introduces a seismic risk analysis method and presents sample results about the seismically isolated and conventional EDG system.

  • PDF

스마트 주택 자동화를 위한 주택 전기과부하 경보 성능 평가 시스템 개발 (Development of a Digital Home Electric Overload Alarm Performance Evaluation System for Smart Home Automation)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.339-344
    • /
    • 2019
  • 본 논문에서는 주택 전기 과부하로 인한 전기화재 피해를 최소화할 수 있는 스마트 주택 자동화를 위한 DSP 기반의 디지털 주택 과부하 경보기를 실험 제작하였다. 그리고 주택 과부하 경보 기술의 유효성을 검증하기 위해서 인공적으로 과부하를 발생시킬 수 있는 하나의 전기 과부하 경보 성능 평가 시스템을 설계, 개발, 구축하고, 과부하 시험을 통해 개발된 주택 과부하 경보기의 유효성을 검증하였다. 특히, EMTP-RV를 이용하여 과부하 시험 모델을 개발하고 과부하 시험을 모의, 계측결과와 비교함으로서 과부하 성능 검증결과의 신뢰성을 확인하였다.

Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations

  • Cao, Yan;Wakil, Karzan;Alyousef, Rayed;Yousif, Salim T.;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.567-580
    • /
    • 2020
  • In this paper, irregularly designed planar reinforced concrete wall structures are investigated computationally. For this purpose, structures consisting of four regular and irregular models of short-order (two-class) and intermediate (five-class) types have been investigated. The probabilistic evaluation of seismic damage of these structures has been performed by using the incremental inelastic dynamic analysis to produce the seismic fragility curve at different levels of damage. The fragility curves are based on two classes of maximum damage indices and the Jeong-Nansha three-dimensional damage index. It was found that there is a significant increase in damage probability in irregular structures compared to regular ones. The rate of increase was higher in moderate and extensive damage levels. Also, the amount of damage calculated using the two damage indices shows that the Jeong-Nensha three-dimensional damage index in these types of structures provides superior results.

무기체계의 사이버보안 시험평가체계 구축방안 연구 (Research for Construction Cybersecurity Test and Evaluation of Weapon System)

  • 이지섭;차성용;백승수;김승주
    • 정보보호학회논문지
    • /
    • 제28권3호
    • /
    • pp.765-774
    • /
    • 2018
  • IT 기술이 발전함에 따라 군의 정보시스템은 효율적인 작전 수행 및 신속한 통신을 위해 현 IT 환경에 맞추어 발전하고 있으며, 이에 따라 네트워크 기술을 사용하는 첨단무기체계에 대한 사이버 공격 위협도 동시에 증가하고 있다. 이러한 문제를 예방 및 완화하기 위해 미국은 무기체계 개발 초기부터 전반에 걸쳐 사이버보안 시험평가체계를 적용하고 있다. 그러나 국내의 경우 사이버보안 시험평가 프로세스가 미약하여 사이버 공격에 따른 피해가 우려된다. 이에 본 논문에서는 미국과 국내 무기체계의 사이버보안 시험평가 현황을 분석하여 국내 무기체계 시험평가에 대한 문제점을 제기하고, 사이버보안 시험평가체계를 도입하는 방안을 제안한다.

강재 배관 Tee의 한계상태 평가를 위한 손상지수의 적용 (Application of Damage Index for Limit State Evaluation of a Steel Pipe Tee)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.30-39
    • /
    • 2022
  • 원자력발전소 주요기기의 건전성 유지는 구조물의 안전성과 관련하여 매우 중요한 문제로 인식되고 있으며 배관시스템의 건전성은 원자력발전소의 안전과 관련된 매우 중요한 문제이다. 지진하중으로 인한 배관시스템의 실제 파괴모드는 피로균열에 의한 누수이며 구조적인 손상 메커니즘은 소성변형을 발생할 수 있는 큰 상대변위로 인한 저주기 피로이다. 이 연구에서는 원자력발전소의 배관시스템에서 3인치의 강재 직관과 강재 배관 Tee로 구성된 시험체에 대하여 다양한 크기의 일정한 진폭에 대하여 면내반복가력실험을 수행하였다. 지진하중으로 인한 배관시스템에서 발생하는 상대변위를 고려하기 위하여 하중진폭을 증가시켰으며, 강재 배관 Tee의 한계상태인 피로균열에 의한 누수가 발생할 때까지 수행하였다. 힘과 변위의 관계에 대하여 손상모델에 기반을 둔 손상지수를 이용하여 한계상태를 표현하였다. 그 결과 손상지수를 이용하여 강재 배관 Tee의 한계상태를 정량적으로 표현할 수 있음을 확인할 수 있었다.