• Title/Summary/Keyword: damage crack growth

Search Result 152, Processing Time 0.025 seconds

Crystal growth and optical properties of Zn and Yb co-doped $LiNbO_3$ rod-shape single crystal by micro-pulling down method (Micro-pulling down법으로 성장시킨 Zn와 Yb를 첨가한 $LiNbO_3$ 단결정의 광학적 특성)

  • Her, J.Y.;Lee, H.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • Yb and Zn co-doped $LiNbO_3$ single crystal rods which had a diameter of 2 mm and a length of $15{\sim}25 mm$ were grown by micro-pulling down (${\mu}-PD$) method. The single crystals were successfully grown and had a uniform diameter and a smooth surface without crack. We realized of $LiNbO_3$ single crystals were hexagonal structure to compare with peaks of $LiNbO_3$ powder by Raman spectra. The threshold level of Zn concentration which is effective for optical damage were observed as about 1 mol% with IR transmission spectra.

A Study on the Provenance of the Stones and the Surface Cracks in the Suljeongri East Three-story Stone Pagoda, Changnyeong, Korea (창녕 술정리 동삼층석탑 석재의 원산지 해석 및 표면균열에 관한 연구)

  • Kim, Jae-Hwan;Jwa, Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 2010
  • The Suljeongri east three-story stone pagoda in Changnyeong (National Treasure No. 34) has been damaged mainly by lots of cracks. The stones used for this pagoda are medium-granied equigranular pinkish biotite granite. Measured magnetic susceptibility values are of from 2 to 9 (${\times}10^{-3}$ SI unit). From the ${\gamma}$-ray spectrometer mesurement K, eU, and eTh contents of the stones are 3 to 7%, 8 to 19 ppm, and 11 to 35 ppm, respectively. Comparing the petrographical and chemical characteristics between the stones of the pagoda and the country rocks near Suljeongri, it is suggested that the most similar rock could be equigranular biotite granite in the western slope of the Mt. Hwawangsan. Vertical, horizontal and diagonal cracks are intensely developed at the lower part of the stone pagoda. Biotite granite has intrinsic microcracks defined as rift and grain rock cleavages. Both rock cleavages are assumed to have led to the crack growth and consequent mechanical damage of the pagoda. It seems that vertical cracks have been grown parallel to the principal compressional stress, and that horizontal cracks to the reacting tensional stress. Diagonal cracks seems likely to have been resulted from conjugate rift and grain rock cleavages.

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

Formation Behavior of Anodic Oxide Films on Al 6061 Alloy in Sulfuric Acid Solution (황산 용액에서 Al6061 합금의 아노다이징 피막 형성거동)

  • Moon, Sungmo;Jeong, Kihun;Lim, Sugun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.393-399
    • /
    • 2018
  • Formation behavior of aluminum anodic oxide (AAO) films on Al6061 alloy was studied in view of thickness, morphology and defects in the anodic films in 20 vol.% sulfuric acid solution at a constant current density of $40mA/cm^2$, using voltage-time curve, observation of anodized specimen colors and surface and cross-sectional morphologies of anodic films with anodization time. With increasing anodizing time, voltage for film formation increased exponentially after about 12 min and its increasing rate decreased after 25 min, followed by a rapid decrease of the voltage after about 28 min. Surface color of anodized specimen became darker with increasing anodizing time up to about 20 min, while it appeared to be brighter with increasing anodizing time after 20 min. The darkened and brightened surfaces with anodizing time are attributed to an increase in thickness of porous anodic oxide film and a chemical damage of the films due to heat generated by increased resistance of the film, respectively. Cross-sectional observation of AAO films revealed the formation of defects of crack shape at the metal/oxide interface after 15 min which prevents the growth of AAO films. Width and length of the crack-like defect increased with anodizing time up to 25 min of anodizing, and finally the outer part of AAO films was partly dissolved or detached after 30 min of anodizing, resulting in non-uniform surface structures of the AAO films.

A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate (홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구)

  • Lee, Joon-Hyun;Lee, Dong-Suk;Lee, Hwan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.

Fielding a Structural Health Monitoring System on Legacy Military Aircraft: a Business Perspective

  • Bos, Marcel J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.421-428
    • /
    • 2015
  • An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

Diagnosis of cracking in T23 welds for power plant application (보일러용 고강도 T23강의 용접부 손상 원인 분석)

  • Park, Ki-Duck;Ahn, Jong-Suk;Shin, Dong-Hyeok;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.61-61
    • /
    • 2009
  • This paper has been performed in order to figure out the reason of failure in T23 weldments used for boiler tube at 550 $^{\circ}C$. Defects such as cracks and cavities occurred in CGHAZ (coarse grain heat-affected-zone) and multi pass of weld metal, and these crack propagated along grain boundary. Microstructure evolution such as grain growth and carbide precipitation was investigated by optical microscope (OM), transmission electron microscope(TEM). Moreover, Auger electron spectroscope (AES) was employed in order to examine segregation along the grain boundaries. There is significant difference in grain size and precipitation distribution in the region where cracking took place. In addition, sulfur segregation was observed. Based on the results of this investigation, it has been possible to establish that this type of cracks were consistent with reheat cracking and creep damage. Selection of optimal filler metal, heat input, and PWHT temperature is required for prevention in order to avoid this type of cracking.

  • PDF

A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel (ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구)

  • Baek, Jung-Hwan;Choi, Byung-Ky
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.