• Title/Summary/Keyword: damage crack

Search Result 1,018, Processing Time 0.033 seconds

Experiments and numerical analyses for composite RC-EPS slabs

  • Skarzynski, L.;Marzec, I.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.689-704
    • /
    • 2017
  • The paper presents experimental and numerical investigations of prefabricated composite structural building reinforced concrete slabs with the insulating material for a residential building construction. The building slabs were composed of concrete and expanded polystyrene. In experiments, the slabs in the full-scale 1:1 were subjected to vertical concentrated loads and failed along a diagonal shear crack. The experiments were numerically evaluated using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. In order to describe strain localization in concrete, both models were enhanced in the softening regime by a characteristic length of micro-structure by means of a non-local theory. Attention was paid to the formation of critical diagonal shear crack which was a failure precursor.

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

Fracture Behavior of a Ductile Layer Sandwiched by Stiff Substrates;Finite Element Analysis (강성모재에 끼워진 얇은 연성층의 파괴거동;유한요소해석)

  • Kim, Dong-Hak;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2078-2086
    • /
    • 1999
  • Fracture behaviors of an interface crack in a ductile layer sandwiched by rigid substrates are analyzed by finite element method. Several fracture mechanisms and the corresponding criteria are examined. And the crack growth behavior and fracture toughness are predicted. As the results, various crack growth procedures such as the crack jump to the other interface on the opposite side, the creation of a new crack far from the initial crack front, and the asymmetric relation of fracture toughness vs. mode mixity ($J_c$-$\Phi$) can be successfully explained.

Prediction of crack trajectory by the boundary element method

  • Bush, M.B.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.575-588
    • /
    • 1999
  • A boundary element method is applied to the analysis of crack trajectory in materials with complex microstructure, such as discontinuously reinforced composite materials, and systems subjected to complex loading, such as indentation. The path followed by the crack(s) has non-trivial geometry. A study of the stress intensity factors and fracture toughness of such systems must therefore be accompanied by an analysis of crack trajectory. The simulation is achieved using a dual boundary integral method in planar problems, and a single boundary integral method coupled with substructuring in axisymmetric problems. The direction of crack propagation is determined using the maximum mechanical energy release rate criterion. The method is demonstrated by application to (i) a composite material composed of components having the elastic properties of aluminium (matrix) and silicon carbide (reinforcement), and (ii) analysis of contact damage induced by the action of an indenter on brittle materials. The chief advantage of the method is the ease with which problems having complex geometry or loading (giving rise to complex crack trajectories) can be treated.

Study on Fracture Life Under Mutual Interaction of Creep and Fatigue (크리프-피로상호작용하의 파단수명에 관한 연구)

  • Cho, Yong-Ee;Kim, Hei-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-106
    • /
    • 1993
  • This is the study on fracture life under the interaction of creep and fatigue. It is difficult to explain the interaction of the creep and fatigue with indication of frequency but the dependency of the time should be considered. The formulation of material varieties causing by interaction of creep and fatigue is required in the accumulative damage method. The strain range partition method requires some of modification corresponding to the changes in temperature and load. All of other method also comprehended with above mentioned problems. Generally, in this field, the variety of stress-strain and suitable parameter is required and connective study between the macro and micro results seems to be insufficient. The linear damage rule is acquiring the support generally but it requires modification in the hgigh temperature instruments. The variety of stress effecting on crack and variety of stress on the metallurgical side are considered to be problems in the future days.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions (노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구)

  • Park, Seung-Hwan;Cho, Sang-Ho;Kim, Seung-Kon;Kim, Kwang-Yeom;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Crack-controlled blasting method which utilizes notched charge hole has been proposed in order to achieve smooth fracture plane and minimize the excavation damage zone. In this study, the blast models, which have a notched charge hole, were analyzed using dynamic fracture process analysis software to investigate the effect of the geometry of a notched charge hole and decoupling indexes of the charge hole on crack growth control in blasting. As a result, crack extension increased and damage crack decreased with the notch length. Ultimately, stress increment factors and resultant fracture patterns with different notch length and width were analyzed in order to examine the effect factors on the crack growth controlling in rock blasts using a notched charge hole.

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

Acoustic Emission Signal Analysis for Damage Assessment of the Reinforced Concrete Slab Structures (철근 콘크리트 슬래브 구조 손상 평가를 위한 음향방출 신호분석)

  • Kim, Jeong-Hee;Han, Byeong-Hee;Seo, Dae-Cheol;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.360-367
    • /
    • 2009
  • The acoustic emission(AE) behavior of reinforced concrete slab under flexural loading was investigated to assess the integrity. This study was aimed at identifying the characteristics of AE response associated with damage development. By applying cyclic loading in various load steps, it was able to differentiate each AE source such as distributed micro crack initiation, friction, flexural crack and localized diagonal tension crack. The secondary peak and the change of AE hit rate gave valuable criteria fur assessment. From the analysis of the felicity ratio, furthermore, it was shown that this values can be used for evaluating the degree of concrete damage. Based on the experimental results, this approach for practical AE application may provide a promising method for estimating the level of damage and distress in concrete structures.