• Title/Summary/Keyword: damage Identification

Search Result 716, Processing Time 0.028 seconds

2-Step Damage Assessment of 3-D Truss Structures Using Extended Kalman Filter Theory (확장 칼만 필터 이론을 이용한 3차원 트러스 구조물의 2단계 손상 추정법)

  • Yoo, Suk-Kyoung;Suh, Ill-Gyo;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.41-49
    • /
    • 2002
  • In this paper, a study of 2-step damage detection for space truss structures using the extended Kalman filter theory is presented. Space truss structures are composed of many members, so it is difficult to find damaged member from the whole system. Therefore, 2-step damage identification method is applied to detect the damaged members. First, kinetic energy change ratio is used to find damage region including damaged member and then detect damaged member using extended Kalman filtering algorithm in damage region. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

A near and far-field monitoring technique for damage detection in concrete structures

  • Providakis, Costas;Stefanaki, K.;Voutetaki, M.;Tsompanakis, J.;Stavroulaki, M.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • Real-time near and far-field monitoring of concrete structural components gives enough information on the time and condition at which damage occurs, thereby facilitating damage detection while in the same time evaluate the cause of the damage. This paper experimentally investigates an integrated monitoring technique for near and far-field damage detection in concrete structures based on simultaneous use of electromechanical admittance technique in combination with guided wave propagation. The proposed sensing system does not measure the electromechanical admittance itself but detect time variations in output voltages of the response signal obtained across the electrodes of piezoelectric transducers bonded on surfaces of concrete structures. The damage identification is based on the spectral estimation MUSIC algorithm. Experimental results show the efficiency and performance of the proposed measuring technique.

BB-BC optimization algorithm for structural damage detection using measured acceleration responses

  • Huang, J.L.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • This study presents the Big Bang and Big Crunch (BB-BC) optimization algorithm for detection of structure damage in large severity. Local damage is represented by a perturbation in the elemental stiffness parameter of the structural finite element model. A nonlinear objective function is established by minimizing the discrepancies between the measured and calculated acceleration responses (AR) of the structure. The BB-BC algorithm is utilized to solve the objective function, which can localize the damage position and obtain the severity of the damage efficiently. Numerical simulations have been conducted to identify both single and multiple structural damages for beam, plate and European Space Agency Structures. The present approach gives accurate identification results with artificial measurement noise.

Damage Assessment and A seismic Capacity Evaluation of Existing Structures (기설구조물의 손상도추정 및 내진능력평가 방법에 관한 연구)

  • 윤정방;송종걸;김유진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.414-421
    • /
    • 1998
  • The content of this paper consists of two related subjects. One is the assessment of damages in the existing structure and the other is the evaluation of seismic capacity of the structure with damage. A method is presented for damage assessment of existing structures using the modal data measured at limited points by the inverse medal perturbation technique. For efficient damage assessment, the number of the unknown probable damaged members is reduced for each damage identification by grouping the members in the large structure. The aseismic capacity is evaluated for the structure using the results of damage assessment. An example analysis is carried out for a building structure subjected to different earthquake excitations.

  • PDF

Damage detection of shear buildings through structural mass-stiffness distribution

  • Liang, Yabin;Li, Dongsheng;Song, Gangbing;Zhan, Chao
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • For structural damage detection of shear buildings, this paper proposes a new concept using structural element mass-stiffness vector (SEMV) based on special mass and stiffness distribution characteristics. A corresponding damage identification method is developed combining the SEMV with the cross-model cross-mode (CMCM) model updating algorithm. For a shear building, a model is assumed at the beginning based on the building's distribution characteristics. The model is updated into two models corresponding to the healthy and damaged conditions, respectively, using the CMCM method according to the modal parameters of actual structure identified from the measured acceleration signals. Subsequently, the structural SEMV for each condition can be calculated from the updated model using the corresponding stiffness and mass correction factors, and then is utilized to form a new feature vector in which each element is calculated by dividing one element of SEMV in health condition by the corresponding element of SEMV in damage condition. Thus this vector can be viewed as a damage detection feature for its ability to identify the mass or stiffness variation between the healthy and damaged conditions. Finally, a numerical simulation and the laboratory experimental data from a test-bed structure at the Los Alamos National Laboratory were analyzed to verify the effectiveness and reliability of the proposed method. Both simulated and experimental results show that the proposed approach is able to detect the presence of structural mass and stiffness variation and to quantify the level of such changes.

Damage Detection in Time Domain on Structural Damage Size (구조물의 손상크기에 따른 시간영역에서의 손상검출)

  • Kwon Tae-Kyu;Yoo Gye-Hyoung;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

A new method to identify bridge bearing damage based on Radial Basis Function Neural Network

  • Chen, Zhaowei;Fang, Hui;Ke, Xinmeng;Zeng, Yiming
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.841-859
    • /
    • 2016
  • Bridge bearings are important connection elements between bridge superstructures and substructures, whose health states directly affect the performance of the bridges. This paper systematacially presents a new method to identify the bridge bearing damage based on the neural network theory. Firstly, based on the analysis of different damage types, a description of the bearing damage is introduced, and a uniform description for all the damage types is given. Then, the feasibility and sensitivity of identifying the bearing damage with bridge vibration modes are investigated. After that, a Radial Basis Function Neural Network (RBFNN) is built, whose input and output are the beam modal information and the damage information, respectively. Finally, trained by plenty of data samples formed by the numerical method, the network is employed to identify the bearing damage. Results show that the bridge bearing damage can be clearly reflected by the modal information of the bridge beam, which validates the effectiveness of the proposed method.

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin;Ogorzalek, Kenneth A.;Dyke, Shirley J.;Song, Wei
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.