• 제목/요약/키워드: damage Identification

검색결과 716건 처리시간 0.9초

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명 (Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method)

  • 김정수;권경수;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

보 구조물에 대한 손상검출기법의 실험적 검증 (Experimental Verification of a Structural Damage Identification Method for Beam Structures)

  • 조국래;이우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.837-840
    • /
    • 1997
  • This paper provides an experimental verification of an FRF-based structural damage identification method (SDIM) developed by the authors for beam structures. The FRF-based SDIM requires the following data : (1) natural frequencies and mode shapes measured at the intact state and (2) the FRF-data measured at the damaged state. Experiments are conducted for the cantilevered beam with one slot and three slots. It is shown that the FRF-based SDIM developed by the authors provide very successful damage identification results which agree well with true damage state.

  • PDF

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.

Detection of a concentrated damage in a parabolic arch by measured static displacements

  • Greco, Annalisa;Pau, Annamaria
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.751-765
    • /
    • 2011
  • The present paper deals with the identification of a concentrated damage in an elastic parabolic arch through the minimization of an objective function which measures the differences between numerical and experimental values of static displacements. The damage consists in a notch that reduces the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness of the structure. The analytical values of static displacements due to applied loads are calculated by means of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental data are used to study the inverse problem and investigate whether a unique solution can occur or not. Various damage intensities are considered to assess the reliability of the identification procedure. Then, the identification procedure is applied to an experimental case, where displacements are measured on a prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to those obtained by means of a dynamic identification technique performed on the same structure.

스펙트럴요소 모델을 이용한 구조손상규명 (Structural Damage Identification by Using Spectral Element Model)

  • 민승규;김정수;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.366-373
    • /
    • 2003
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form to include the nonlinearity of damage magnitudes from the dynamic stiffness equation of motion for a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses for a cantilevered beam with three piece-wise uniform damages.

  • PDF

손상지수법과 구조식별(SID) 기법을 통한 균열된 강판형 모형의 손상검색 (Damage Detection in Cracked Model Plate-Girder using Damage Index Method and System Identification Technique)

  • 백종훈;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.109-116
    • /
    • 2001
  • An integrated damage identification system (IDIS) and system identification (SID) technique using modal information to detect damage in structures is presented. The objective is to detect damages in cracked model plate-girder without baseline modal parameters. The theory of damage localization and system identification is outlined. Experiments on a model plate-girder was described and a baseline model representing the experimental modal characteristics of the model plate-girder is updated using the system identification technique. Finally, damage inflicted in the model plate-girder is predicted using the IDIS software.

  • PDF

이동하중응답을 이용한 손상인식기법의 실험적 검증 (Experimental Verification of Damage Identification Method using Moving load Response)

  • 최상현;김대혁
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.552-559
    • /
    • 2009
  • Most damage identification methods for structural health monitoring developed to date utilize modal domain responses which require postprocessing and inevitably contain errors in transforming the domain of responses. In this paper, the feasibility of a damage identification method based on dynamics responses from moving loads is experimentally verified. The experiment is performed via applying periodic and non-periodic moving loads to a steel beam and acceleration and displacement responses of the beam is measured. The moving loads is applied using steel balls and the damage of a structure is simulated by saw-cutting the beam. The damage identification results using the measured responses show that the moving load response based damage identification method successfully identify all damages in the beam.

  • PDF

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.