• Title/Summary/Keyword: dam reservoir

Search Result 663, Processing Time 0.024 seconds

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

DISTRIBUTION OF ORGANIC MATTERS AND RELEASE CHARACTERISTICS IN DAM RESERVOIR

  • Lee, Yo-Sang;Kim, Woo-Gu;Koh, Deuk-Koo;Yang, Jae-Rheen
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2002
  • The inflow into a multi-purpose dam reservoir contains many suspended solids from the upper stream during the rainy season. Concentrations of SS increased to 73.3 mg/l and the TP measurement increased to 0.09 mg/l during the rainy season in 1999. It was discovered that particles less than $10\;\mu\textrm{m}$ in size composed about 50% of the total amount. Some of these particles reduce the reservoir capacity and have an impact on water. In this study, the sediment depth at Daecheong multi-purpose dam was examined. Piston coring was performed at 9 locations At Hoenam 1 out of 9 locations examined showed maximum depth, which was 90 cm and at Muneui 3 showed the minimum depth, which was 35 cm. At Hoenam, the release rate of TN was found to be $62.14~84.72\;mg/\textrm{m}^2{\cdot}day$ in 1998. However, it was found to considerably reduced to $23.20\;mg/\textrm{m}^2{\cdot}day$ in 2001. The release rate of TP was measured at $13.02~14.38\;mg/\textrm{m}^2$.day at 1998, and it was reduced to $6.93mg/\;mg/\textrm{m}^2{\cdot}day$ in 2001.

  • PDF

A Comparative Study of Reservoir Operations for Flood Control of the Chungju Dam (홍수시 충주댐 운영방안의 비교검토)

  • 이길성;정동국
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.225-233
    • /
    • 1985
  • To develop a simulation strategy of multi-reservoir operation in flood season, the single dam operations methed for the Chungju dam are investigated in the Han river basin. Thus, spillway rule curve, rigid ROM, and linear decision rules are applied for control operations, subject to the restrictions imposed by the river and the reservoir characteristics. The storage and release and control/utility efficiencies for several floods are calculated. The variation of control coefficients with respect to the return period are also examined. As the results of this comparative study, the optimal operation method can be selected in terms of the magnitude of flood. With inflow forecasting, the flood control operation can be greatly improved by variable coefficients rigid ROM and linear decision rules.

  • PDF

A Study for Storage Reallocation of Multipurpose Reservoir(I) - Flood Control Storage Analysis (다목적댐 용량 재할당에 대한 연구(I)- 치수용량 분석)

  • Yi, Jae-Eung;Kwon, Yong-Ik;Yoon, Young-Nam;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2004
  • Generally, reservoir storage is allocated according to planned purposes established before construction and operating policies are established through release control. The established reservoir allocation is hardly changed unless the special cases such as raising dam or changed purposes occur It Is, however, likely that public needs and objectives can be changed as time go on, the study for multipurpose reservoir storage reallocation is performed as an alternative to reflect these. In this study, flood control analysis is performed for several alternatives of reallocation for the Daechung multi-purpose reservoir in Geum river. As a result, it is confirmed that flood control capability is not decreased compared to single operation of Daechung reservoir for the same flood condition even if conservation level of Daechung multi-purpose reservoir is increased.

Estimation of Break Outflow from the Goeyeon Reservoir Using DAMBRK Model (DAMBRK 모형을 이용한 괴연저수지 붕괴유출량 추정)

  • Lee, Jin Young;Park, Dong Hyeok;Kim, Seong-Joon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.459-466
    • /
    • 2017
  • Several reservoirs that were managed by local governments and the Korea Rural Community Corporation have recently collapsed. One of them is the Goeyeon reservoir in Yeongcheon-si, Gyeongsangbuk-do that collapsed mainly around the spillway due to heavy rain at 9 O'clock, on 21 August 2014. The Goeyeon reservoir was an aging agricultural reservoir over 70 years since it was built. In this study, the collapse situation of the reservoir was reproduced through the DAMBRK model. Flood inundation maps were reconstructed for the breach outflow of the dam analyzed by the DAMBRK model. We estimated the breach duration and outflow of the reservoir as compared with the inundation image taken by the Unmanned Aerial Vehicle (UAV) at the time when the Goeyeon reservoir collapsed. The results of this study are expected to be useful for predicting damage in the downstream inundation area when a reservoir collapses.

Improvement for Reservoir Operation Module of Flood Forecasting-Warning Systems in Han River (한강 홍수예경보시스템의 저수지 운영모듈 개선)

  • Kwon, Oh-Ig;Kim, Sung;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.685-695
    • /
    • 1999
  • On the premise of flood control procedure, flood forecasting-warning, system(FFWS) is one of actions for disaster prevention. It makes public announcements for flood situations timely in order to mitigate damage from floodings. Multi-purpose dam which has flood control storage plays an important role in river basin at flood time. In FFWS, it is reservoir operation module that is related to reservoir operation of multi-purpose dam. This study considers the current conditions and problems in reservoir operation module of FFWS in Han River and improves reservoir operation module under limited research scope. As results, additional reservoir operation modules such as Technical ROM(Reservoir Operation Method) and ARD(Approved Release Discharge) ROM were built in FFWS. Using these newly built reservoir operation modules. Han River Flood Control Office will plan and work for flood control and flood forecasting. Firstly, it may plan for flood control by Technical ROM which is deterministic simulation model, and work for final flood control and flood forecasting by ARD ROM according to approved release discharge afterward.

  • PDF

Effect of Hydroelectric Power Plant Discharge on the Turbidity Distribution in Dae-Cheong Dam Reservoir (발전방류구 위치변화에 따른 저수지내 탁수변화 -대청댐을 대상으로-)

  • Seo, Se-Deok;Lee, Jae-Yil;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.227-234
    • /
    • 2011
  • In the study, CE-QUAL-W2 was used and its examination and correction were conducted targeting 2001 and 2003 when the condition of rainfall was contradicted. Using the proved model in 2003, a scenario was implemented with management of locations for dewatering outlets and actual data for dam management in 1987 when inflow and outflow level were almost same. In case of the scenario which the location of dewatering outlets was 5m higher than usual location, exclusion efficiency for turbid water inflow at the beginning of precipitation was good. In case of the scenario which the location of dewatering outlets was 10m lower than usual location, exclusion efficiency for excluding turbid water remained in a reservoir after the end of precipitation. However, the scenario applying dam management data in 1987, exclusion efficiency was relatively low. In the scenario, power-generating water release spot at EL.57m for first four days after the beginning of precipitation, EL.52m for 5th to 8th and EL.42m from 9th days. An analysis of the scenario reveals that both excessive days exceeded 30 NTU and average turbidity levels were decreased comparing before and after the alteration on outlets. The average turbidity levels were decreased by minimum of 55% to maximum of 70% and 30NTU exceeding days were decreased by 45 days at maximum. Also, since it could exclude most of turbid water in a reservoir before the destatifcation, the risk for turbid water evenly distributed in a reservoir along with turn-over could be decreased as well.

Water Supply Capacity of the Keum River Barrage Dam Based on Inflow Scenario (유입량 시나리오에 따른 금강하구둑의 용수공급능력 분석)

  • Noh, Jae-Kyoung;Kim, Dae-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.499-502
    • /
    • 2003
  • Using the daily water balance model of the Keum River Barrage Dam, water supply capacity was analyzed. The scenario of reservoir inflow was selected to case with Daechung dam, case with no dam, case with Yongdam dams. Runoffs in 12 sub watersheds were simulated by the DAWAST model considered return flows.

  • PDF

Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir Systems (댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.143-150
    • /
    • 2000
  • A physical lumped parameter model is proposed for the time domain analysis of dam-reservoir system. The exact solution of transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and the domains. Mass and damping coefficient are obtained from asymptotic behavior of the frequency domain solution. Further refinement to the lumped model is made by approximating the kernel function of the convolution integral in the exact solution. Finally a new physical lumped parameter model is proposed that consists of two masses, a spring and two dampers for each mode. It is demonstrated that new lumped parameter model of transmitting boundary can give excellent results.

  • PDF