• Title/Summary/Keyword: dam behavior

Search Result 231, Processing Time 0.022 seconds

Overtopping Model Experiments and 3-D Seepage Characteristics of the Embankment of Deteriorated Homogeneous Reservoirs (노후화된 균일형 저수지 제체의 월류모형실험과 3차원 침투특성)

  • Lee, Young Hak;Lee, Tae Ho;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.13-23
    • /
    • 2019
  • In this study, an overtopping model experiments and three dimensional seepage characteristics at the deteriorated homogeneous reservoirs were performed to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The failure pattern, pore water pressure, earth pressure and settlement by overtopping were compared and analyzed. The pattern of the failure by overtopping was gradually enlarged towards reservoirs crest from the spillway transition zone at initial stage. In the rapid stage and peak stage, the width and depth of failure gradually increased, and the pattern of the failure appeared irregular and several direction of the erosion. In the early stage, the pore water pressure at spillway transitional zone was more affected as its variation and failure width increased. In the peak stage, the pore water pressure was significantly increased in all locations due to the influence of seepage. The earth pressure increased gradually according to overtopping stage. The pore pressure by the numerical analysis was larger than the experimental value, and the analysis was more likely to increase steadily without any apparent variation. The horizontal and vertical displacements were the largest at the toe of slope and at the top of the dam crest, respectively. The results of this displacement distribution can be applied as a basis for determining the position of reinforcement at the downstream slope and the crest. The collapse in the overtopping stage began with erosion of the most vulnerable parts of the dam crest, and the embankment was completely collapsed as the overtopping stage increased.

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas (2상 유한체적모델 기반의 광역적 토석류 유동해석기법)

  • Jeong, Sangseom;Hong, Moonhyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.5-20
    • /
    • 2022
  • To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.

A case study on an optimal analysis technique of primary measurements for safety management of fill dam (필댐의 안전관리를 위한 주요 계측 데이터의 최적 분석기법에 대한 사례 연구)

  • Jeon, Hyeoncheol;Yun, Seong-Kyu;Kim, Jiseong;Im, En-Sang;Kang, Gichun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1155-1166
    • /
    • 2021
  • In this study, statistical analysis was performed to suggest the optimal analysis techniques for the main measuring instruments of the fill dam, such as seepage, crest settlement, and porewater pressure gauge. In addition, correlation analysis with water level and rainfall data was performed. Based on the results of descriptive statistical analysis for each instrument, porewater pressure gauges could be classified into 3 groups or 2 groups through principal component analysis, In the case of the group having a high correlation with the water level instrument, the correlation between the gauges was also large. In the case of seepage instrument, the distribution showed an extremely asymmetric distribution, so for quantitative analysis, the average seepage during non-precipitation and precipitation could be estimated through decision tree analysis. In the case of the crest settlement instrument, the correlation analysis showed that the correlation between the gauges was large, but the relationship with the water level instrument did not show a significant linear relationship, so EMD analysis was performed to analyze it in more detail. It is judged that principal component analysis, decision tree analysis, and data filtering method can be applied to analyze the behavior of pore water pressure meters, seepage, and crest settlement instrument as major measurement items of fill dam.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

Residual Settlement Behavior in Soft Ground Improved by PBD during Operating Facilities (PBD공법이 적용된 연약지반에서 운용 중인 시설물의 잔류침하거동)

  • Kang, Gichun;Kim, Taehyung;Jeong, Choonggi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2014
  • The Plastic Board Drain is used to improve soft soils deposited in container terminal area at a port. This paper describes settlement behavior of soft ground in this area from PBD installation to the time of operating facilities. Previous researches focused on soil improvement effect of PBD, that is, the settlement occurred during ground improvement period. The residual settlement occurred during operating the facility is very important from the maintenance and management point of view. However, the study of this residual settlement has been rarely conducted. In this study, by analyzing the measured settlement data obtained from the container terminal area at the port, it was verified that the residual settlement induced during operating facilities occurred in a layer with PBD improvement. In addition, by comparison the settlement predicted by a numerical analysis with the settlement measured in the field, it was confirmed that the actual settlement is in the range of predicted settlement.

Parametric Study of MD Constitutive Model for Coarse-Grained Soils (조립재료에 대한 MD구성모델의 매개 변수 연구)

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Coarse-grained soils are typical engineering materials commonly used in many civil engineering applications such as structural fills, subgrade and drainage fills for dam, railway and bridge. Various researches have been performed with related to constitutive laws for numerical analysis of such structures. This paper presents a parametric study for a constitutive model for coarse grained materials. The model is a kind of the bounding surface models based on critical state theory. A distinct feature of the model is to capture the response of coarse-grained materials with different void ratios and confining pressures using a single set of model parameters. The model behavior is defined with a set of elastic parameters, critical state parameters, and model-specific parameters. The parametric study was performed for the model-specific parameters. The result of parametric study shows that the model is capable to capture stress-dilatancy behavior and kinematic-hardening under non-associative plastic flow.

Analysis of Reservoir Seismic Response Acceleration Amplification Characteristics Using Seismic Measurements Data (지진계측 기록을 이용한 저수지 지진응답가속도 증폭 특성 분석)

  • Lee, Moojae;Kim, Yongseong;Tamang, Bibek;Lee, Seungjoo;Lee, Gilyong;Heo, Joon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.51-63
    • /
    • 2020
  • In this study, the model test of a reservoir was performed through a dynamic analysis method by using the data obtained from seismometers. Besides, we analyzed the behavior of the seismic acceleration amplification by reservoir height. To test the model, the data measured by the seismometers were applied at the foundation of the reservoir as input data, and the results from the analysis were compared with the data measured at the dam crest. The analysis results manifest that the peak values and the trend of the seismic wave obtained from the numerical analysis are in good agreement with the measured data. Also, the acceleration amplification ratio was proportional to the reservoir height and the magnitude of the earthquake. Through this study, the dynamic analysis method, which is based on the cyclic elastoplastic constitutive equation, can be considered as an appropriate technique to analyse the seismic behavior by the application of the data obtained from the seismometers installed in the reservoir. Also, the applicability of the seismometers can be enhanced through this technique in the future.

Development and Installation of Large-scale Geotechnical Testing Facilities (대형 지반시험장비의 개발 및 구축)

  • Seo, Min-Woo;Ha, Ik-Soo;Kim, Yong-Seong;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1233-1240
    • /
    • 2005
  • As the geotechnical technologies have grown, the size of civil structures has become bigger than before, thereby requiring large-scale geotechnical testing equipments which can evaluate the mechanical behavior of large size testing materials such as gravel, crushed rock and so on. These kind of large testing equipments are usually used to evaluate the mechanical characteristics of large size material which are applied in the large infra structures like dam, seashore structure, coastal landfill, soil-structure interaction and seismic response of large-scale structure. In this research, state-of-the-art information in the field of geotechnical engineering was collected and summarized for such large-scale experimental equipments as large-scale geo-centrifuge, large-scale triaxial testing machine, large-scale direct shear testing apparatus and large-scale oedometer.

  • PDF