• Title/Summary/Keyword: dam behavior

Search Result 228, Processing Time 0.027 seconds

Evaluation of the Effect of Input Motions on Earthquake-Induced Settlement of Embankment Dams (입력지진파에 따른 지진 시 필댐의 침하량 영향관계 분석)

  • Jo, Seong-Bae;Kim, Nam-Ryong;Kim, Tae Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.509-520
    • /
    • 2020
  • Currently, the criteria for input motions used in dam seismic design are clearly presented in general provisions of seismic design (KDS 17 10 00), and seismic ground motion records should be matched to the standard design response spectrum. However, the effect on the results is not assessed according to the selection of the seismic ground motion records, making it difficult to select seismic input motions. Therefore, in this study, the change in the amount of crest settlement of an embankment dam was assessed through numerical analysis after matching the seismic ground motion records of domestic and overseas earthquakes in accordance with the standard design response spectrum provided in the seismic design code (KDS 17 10 00). The results showed that the behavior of the upper part of the embankment, such as maximum acceleration at the crest and amplification through the dam, rather than the effect of free-field acceleration, had a greater effect on the amount of crest settlement. Moreover, it was confirmed that even an input seismic motion matched to the standard design response spectrum can make a difference in settlement depending on the characteristics of amplification through a dam body.

Evaluation of the Compaction Characteristics of CFRD Construction Materials (CFRD 시공시 축조재료의 다짐특성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Park, Jong-Hwa
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2010
  • A prototype of a Concrete-Faced Rock-fill Dam (CFRD) was constructed to evaluate the behavior of the materials in each zone within the dam. The tested materials, selected based on their grain size distribution, were used in constructing the prototype dam with layers of variable thickness, settlement ratio, and water content. We investigated the suitability of various values of hydraulic conductivity, water content, dry unit weight, and settlement ratio for zones within the dam. The test results revealed the relationships between the number of passes and the dry unit weight, between the dry unit weight and the settlement ratio, and between the settlement ratio and the number of passes. This paper focuses on the relationship between hydraulic conductivity and the number of passes. The results of the present analysis could be used to establish reasonable compaction standards for materials used in dam construction.

Numerical Analysis of Relief Well Effect for Seepage Control of Small Fill Dam (소규모 필댐의 침투수 관리를 위한 감압정 효과에 대한 수치해석)

  • Chang, Jaehoon;Yoo, Chanho;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.2
    • /
    • pp.5-13
    • /
    • 2020
  • The relief wells have been studied to be effective in seepage control in small dams such as agricultural dams. However, quantitative studies on the effects of the relief well are rare and there is no design standard also. To quantitatively analyze the effects of the seepage control in small dams, the research of up-lift pressure influencing the toe of dam body was conducted by seepage analysis, which investigates the behavior characteristics, according to the conditions of dam and foundation. The effect of seepage control was studied by analyzing the reduction effect of up-lift pressure at foundation ground of the toe of downstream dam slope depending on the installation of the relief well. As a result, it was found that the relief wells are effective in reducing the pore water pressure in the foundation, which can cause piping and sliding failure.

Study on the Application of Damping Ratio in the Seismic Performance Evaluation of Concrete Dams (콘크리트 댐 내진성능평가 시 감쇠비 적용 방안 고찰)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Minho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • The purpose of this paper is to review the appropriateness of the application method for the value of the damping ratio suggested in the current design standards and evaluation guidelines when evaluating the seismic performance of concrete dams and to suggest improvements. As a result of the study, for the magnitude of the damping ratio in the dynamic elastic analysis, it is necessary to refer to the case of a similar dam in which the magnitude of the earthquake load is similar and the reproducibility of the damping ratio has been verified. Considering this, it is necessary to apply a low damping ratio and consider adding hysteresis damping in case of nonlinear behavior. In addition, since the concrete dam body located on the rock has insignificant radiation attenuation effect, it is not reasonable to increase the damping ratio of the concrete dam body to reflect the radiation damping. Therefore, in order to evaluate the realistic seismic performance of concrete dams, it is necessary to revise the damping ratio-related contents contained in the current dam design standards and evaluation guidelines.

Effect of Characteristics of Sand/Gravel and Rock Materials on Behavior of Dam during Construction and Impounding (사력재와 석산재의 특성이 축조와 담수시 댐체 거동에 미치는 영향)

  • Seo, Min-Woo;Cho, Sung-Eun;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.45-55
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages which it has compared with rockfill dam and recently, sand/gravel materials, Instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In Korea, two dams using sand/gravel materials as a main fill material were designed and are being constructed. In this research, the strength and deformation characteristics of the rockfill and sand/gravel materials taken from 2 dam sites were tested by using a laboratory large triaxial testing equipment for a total of 7 cases. From the results of large triaxial and compaction tests, it was observed that two kinds of materials show a little different compaction, shear strenght and deformation characteristics. It could be expected that the shear strength of sand/gravel material was not disadvantageous compared with that of rockfill materials, however, there was some difference between two materials with respect to behavior characteristics. On the other hand, smaller displacements were observed from numerical analysis based on the data from a large triaxial test when the sand/gravel is used as a main fill material compared with the case when the crushed rock material is used as a main fill material. Finally, in spite of a little different shear strength and behavior characteristic between two materials, it was concluded that it will not lead to a significant problem when the sand/gravel material is used as a main rockfill material.

Real-time Reservoir Dam Status Evaluation System Using Wireless Sensor Network System (무선 센서 네트워크 시스템을 이용한 실시간 저수지 댐의 상태평가 시스템)

  • Yoo, Chanho;Kim, Seungwook;Hwang, Jungsoon;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • The wireless sensor network system has the advantage of confirming the behavior of the entire facility by improving the disadvantages of conventional monitoring system. As a result, it is widely proposed as safety diagnosis and measurement of structures, water management systems, and management systems for dam structures. However, there is a lack of research that can evaluate the condition of facilities such as safety at the same time as monitoring. In this study, it is proposed a wireless sensor network system which can evaluate the behavior characteristics of facilities and evaluate the safety status for improving the technical disadvantages on conventional monitoring system. The geotechnical risk factors for the reservoir dam facility were evaluated and the limit values for the risk factors causing the failure of the facility were set. In other words, the system was set up so that the risk factors can be measured and the limit status can be evaluated immediately for each factor. In this study, numerical analysis is carried out for seepage and slope stability analysis using the typical cross section for reservoir dams. The stress-porewater coupling finite difference numerical analysis is performed for establishing the limit displacement for reservoir dam structures. It is developed a system that can estimate the time to reach the critical value by regression analysis using the measured datas.

A Study on Geotechnical Centrifuge Testing Method for Seismic Performance Evaluation of Large Embankment Dams (대형 댐의 지진응답특성평가를 위한 원심모형시험 기법 연구)

  • Kim, Nam-Ryong;Lim, Jeong-Yeul;Im, Eun-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Damages of large embankment dams by recent strong earthquakes in the world highlight the importance of seismic security of dams. Some of recent dam construction projects for water storage and hydropower are located in highly seismic zone, hence the seismic performance evaluation is an important issue. While state-of-the-art numerical analysis technology is generally utilized in practice for seismic performance evaluation of large dams, physical modeling is also carried out where new construction technology is involved or numerical analysis technology cannot simulate the behavior appropriately. Geotechnical centrifuge modeling is widely adopted in earthquake engineering to simulate the seismic behavior of large earth structures, but sometimes it can't be applied for large embankment dams due to various limitations. This study proposes a dynamic centrifuge testing method for large embankment dams and evaluated its applicability. Scaling relations for a case which model scale and g-level are different could be derived considering the stress conditions and predominant period of the structure, which is equivalent to previously suggested scaling relations. The scaling principles and testing method could be verified by modified modeling of models using a model at different acceleration levels. Finally, its applicability was examined by centrifuge tests for an embankment dam in Korea.

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Strategic Choices of Small States in Asymmetric Dependence: Myanmar - China Relations through the case of the Myitsone Dam

  • Eszterhai, Viktor;Thida, Hnin Mya
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.157-173
    • /
    • 2021
  • In the transition to a multipolar international system, the literature has focused on great power competition while little attention has been given to the strategic possibilities of smaller states. However, as a result of globalization, states are so closely interconnected that the primary strategies of even major powers are not to achieve zero-sum solutions but to create asymmetric dependency through which they can influence the behavior of other states and non-state actors. States are assisted in this effort by a variety of tools, including setting up institutions, direct economic influence and through building different forms of infrastructure connectivity networks. By discussing asymmetric dependency situations from the perspective of the great powers, the literature presents smaller states primarily as passive actors, paralyzed by their dependence on great powers. Our paper argues that interdependence allows smaller states to effectively influence larger actors and examines strategies from which smaller states can choose in order to influence the behavior of larger states. Despite an extremely asymmetric relationship between Myanmar and China, actors in Myanmar have sought to influence China's Myanmar policy. We examine a case study of the Myitsone Dam, including Myanmar's strategic aims, chosen strategy and limitations in maneuvering space. Semi-structured interviews with local decision-makers and stakeholders are conducted in order to portray the full picture. Our study concludes that further research on the influencing strategies of small states in response to asymmetric dependence can contribute to a better understanding of the interdependence of states.