• Title/Summary/Keyword: daily monitoring

Search Result 762, Processing Time 0.032 seconds

Monitoring and assessment of nutritional content in home meal replacements (HMRs) (가정간편식의 영양성분 함량 모니터링 및 평가)

  • Lee, Sae Ram;Kim, Sung Dan;Kim, Su Un;Lee, Young Ju;Lee, Kyung Ah;Kim, Na Young;Hong, Mi Sun;Lee, Sung Deuk;Hwang, In Sook;Yu, In Sil;Jeong, Jin Sook;Shin, Yong Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.313-319
    • /
    • 2022
  • This study was performed to analyze the nutritional contents (calories, carbohydrate, protein, fat, sugar, sodium and potassium) of home meal replacements (HMRs) and assess the total nutritional value of these meals. The energy, carbohydrate and sodium contents were highest in fried rice, and the percentage of the daily value (%DV) was also higher than 50%. In all HMRs, the sodium Index of Nutritional Qualities (INQs) was higher than one, but all sugar INQs were lower than one. Most of the energy contribution of the carbohydrates in fried rice, spaghetti and tteokbokki exceeded the recommended range, whereas protein and fat values were mostly under the recommended range in one-dish type lunchboxes and tteokbokki respectively. When applying the nutritional labeling requirements for food, a difference of 31% above or below the labeling standard indicates that continuous monitoring is needed. These results suggest that HMRs contain high levels of sodium and appear to be nutritionally imbalanced in part.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Monitoring and Risk Assessment of Lead and Cadmium in Various Agricultural Products Collected from the Korean Market

  • Chang, Eun Jung;Park, Sung Hee;Lee, Kyung Jin;Choe, Jee su;Kim, Mee hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.240-247
    • /
    • 2018
  • This study was carried out to determine the levels of lead and cadmium as found in nine agricultural products (n = 578) sold in Korea, and to estimate the risk to human health that is summarily associated with their intake. The concentrations of Pb and Cd were measured using an ICP-MS after microwave digestion in this study. The average contents of Pb and Cd were measured as 0.014 and 0.017 mg/kg for barley, 0.006 and 0.005 mg/kg for mung bean, 0.008 and 0.007 mg/kg for kidney bean, 0.010 and 0.004 mg/kg for green bean, 0.008 and 0.001 mg/kg for pineapple, 0.016 and 0.002 mg/kg for apricot, 0.015 and 0.002 mg/kg for Japanese apricot, 0.021 and 0.002 mg/kg for plum and 0.019 and 0.003 mg/kg for jujube, respectively. The levels of Pb and Cd in the study samples were less than the maximum residual levels established by the European Union (EU), CODEX, and the Korea Food Code. As we have seen, the daily dietary exposures of Pb and Cd from these agricultural products for the general population were noted as 0.067% of PTWI ($25{\mu}g/kg$ b.w./week) and 0.28% of PTMI ($25{\mu}g/kg$ b.w./month), respectively. In line with the study conclusions, these results suggest that the current dietary intakes of Pb and Cd from these agricultural products in Korea have no appreciable risk effects on health for humans as noted in this experiment.

Nutrient Load Balance in Large-Scale Paddy Fields during Rice Cultivation (경지 정리된 광역 논에서 영양물질 수지와 배출 특성)

  • Kim, Min-Kyeong;Roh, Kee-An;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.164-171
    • /
    • 2005
  • The aim of this study was to evaluate the load of nutrient from paddy fields. Water management practices that can reduce eutrophication and meet water quality requirements will also be addressed. Continuous monitoring from May to September in 2002 and 2003 was conducted for water quantification and qualification at the intensive paddy fields in Icheon, Gyunggi province of Korea. Water balance and concentration variation of nitrogen and phosphorus in the water were independently compared for water quality assessment at each rice cultivation period. Rice land preparation and transplanting periods usually marked the highest water demand when compared to other periods of cultivation. Overall, a greater net irrigation ratio was observed during the transplanting period in 2002 (92.3%) and 2003 (87.2%). The measured total N loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 9.9, 41.6, 22.1, and $5.5kg\;ha^{-1}$ for 2002 and 15.8, 55.4, 17.3, and $7.5kg\;ha^{-1}$ for 2003, respectively. The measured total P loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 2.1, 13.0, 3.6, and $1.8kg\;ha^{-1}$ for 2002 and 1.6, 15.0, 5.0, and $1.2kg\;ha^{-1}$ for 2003, respectively. Daily nutrient load followed the pattern of surface drainage water, but this pattern was changed by rainfall events. The nutrient load in drainage water depends on rainfall and surface drainage water amount from the paddy fields. Interestingly, the load of total N and total P output was smaller than the input load due to the natural infiltration that Occurred during the rice cultivation period. It is concluded that the paddy fields have a beneficial effect on the ecosystem and can reduce eutrophication in the water.

EMC and Unit Loads of Pollutants Generated from Tomato Cultivation during Rainfall (강우시 시설재배지역의 오염물질 유출 EMC 및 원단위 산정)

  • Jeon, Je Chan;Kwon, Koo Ho;Lee, Sang Hyeub;Lee, Jea Woon;Gwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.555-566
    • /
    • 2013
  • Total maximum daily load enforced in 2004 is a program to evaluate the amount of pollutants by each land use type and manage to meet a target water quality of each waterbody. The many research to calculate runoff load of pollutants by landuse type have been studied. This study was conducted to calculate pollutants EMC, load and unit load in stormwater runoff generated from tomato growing area. Monitoring was conducted about 32 event during 4years and water quality parameters such as BOD, $COD_{Mn}$, TOC, TSS, TN, TP, $NH_3-N$, $NO_3-N$, $PO_4-P$ were analyzed at the laboratory. The average EMC were measured as follows: 9.6 BOD mg/L, 17.2 $COD_{Mn}$ mg/L, 5.5 TOC mg/L, 319.4 TSS mg/L, 4.4 T-N mg/L, 2.6 T-P mg/L, 0.5 $NH_3-N$ mg/L, 0.04 $NO_2-N$ mg/L, 2.6 $NO_3-N$ mg/L, 0.8 $PO_4-P$ mg/L. TN and TP is dichargeed as $NO_3-N$ and particle phosphorus type, respectively.

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days (황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석)

  • Moon, Yun Seob;Koo, Youn Seo;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

Comparison of Multi-Satellite Sea Surface Temperatures and In-situ Temperatures from Ieodo Ocean Research Station (이어도 해양과학기지 관측 수온과 위성 해수면온도 합성장 자료와의 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Choi, Do-Young;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.613-623
    • /
    • 2019
  • Over the past decades, daily sea surface temperature (SST) composite data have been produced using periodically and extensively observed satellite SST data, and have been used for a variety of purposes, including climate change monitoring and oceanic and atmospheric forecasting. In this study, we evaluated the accuracy and analyzed the error characteristic of the SST composite data in the sea around the Korean Peninsula for optimal utilization in the regional seas. We evaluated the four types of multi-satellite SST composite data including OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) SST, and MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature) collected from January 2016 to December 2016 by using in-situ temperature data measured from the Ieodo Ocean Research Station (IORS). Each SST composite data showed biases of the minimum of 0.12℃ (OISST) and the maximum of 0.55℃ (MURSST) and root mean square errors (RMSE) of the minimum of 0.77℃ (CMC SST) and the maximum of 0.96℃ (MURSST) for the in-situ temperature measurements from the IORS. Inter-comparison between the SST composite fields exhibited biases of -0.38-0.38℃ and RMSE of 0.55-0.82℃. The OSTIA and CMC SST data showed the smallest error while the OISST and MURSST data showed the most obvious error. The results of comparing time series by extracting the SST data at the closest point to the IORS showed that there was an apparent seasonal variation not only in the in-situ temperature from the IORS but also in all the SST composite data. In spring, however, SST composite data tended to be overestimated compared to the in-situ temperature observed from the IORS.

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

National Management Measures for Reducing Air Pollutant Emissions from Vessels Focusing on KCG Services (선박 대기오염물질 배출 현황 및 저감을 위한 국가 관리 대책 연구: 해양경찰 업무를 중심으로)

  • Lee, Seung-Hwan;Kang, Byoung-Yong;Jeong, Bong-Hun;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Particulate matter levels are rapidly increasing daily, and this can affect human health. Therefore, air pollutant emissions from sea vessels require management. This study evaluates the status of air pollutants, focusing on air pollutant emissions from the vessels of the Korea Coast Guard (KCG), and proposes national management measures to reduce emissions. According to a report recently released (2018) by the National Institute of Environmental Research (NIER), emissions from vessels constituted 6.4 % of the total domestic emissions, including 13.1 % NOx, 10.9 % SOx, and 9.6 % particulate matter (PM10/PM2.5). Among the rates of pollutant emission from vessels, the emission rates of domestic and overseas cargo vessels were the highest (50.6 %); the ratio of fishing boats was 42.6 %. With respect to jurisdictional sea area, 44.1 % of the emissions are from the south sea, including the Busan and Ulsan ports, and 24.8 % of the emissions are from the west sea, including the Gwangyang and Yeosu ports. The KCG inspects boarding lines to manage emission conditions and regulate air pollutant emissions, but it takes time and effort to operate various discharge devices and measure fuel oil standards. In addition, owing to busy ship schedules, inspection documents are limited in terms of management. Therefore, to reduce the air pollutant emissions of such vessels, regulations will be strengthened to check for air pollutants, and a monitoring system based on actual field data using KCG patrol ships will be established, for each sea area, to manage the emissions of such vessels. Furthermore, there is a need for technological development and institutional support for the introduction of environmentally friendly vessels.