• Title/Summary/Keyword: daily maximum temperature

Search Result 405, Processing Time 0.026 seconds

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature (위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰)

  • 변민정;한경수;김영섭
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.

Validation of Quality Control Algorithms for Temperature Data of the Republic of Korea (한국의 기온자료 품질관리 알고리즘의 검증)

  • Park, Changyong;Choi, Youngeun
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.299-307
    • /
    • 2012
  • This study is aimed to validate errors for detected suspicious temperature data using various quality control procedures for 61 weather stations in the Republic of Korea. The quality control algorithms for temperature data consist of four main procedures (high-low extreme check, internal consistency check, temporal outlier check, and spatial outlier check). Errors of detected suspicious temperature data are judged by examining temperature data of nearby stations, surface weather charts, hourly temperature data, daily precipitation, and daily maximum wind direction. The number of detected errors in internal consistency check and spatial outlier check showed 4 days (3 stations) and 7 days (5 stations), respectively. Effective and objective methods for validation errors through this study will help to reduce manpower and time for conduct of quality management for temperature data.

Feasibility of Stochastic Weather Data as an Input to Plant Phenology Models (식물계절모형 입력자료로서 확률추정 기상자료의 이용 가능성)

  • Kim, Dae-Jun;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Daily temperature data produced by harmonic analysis of monthly climate summary have been used as an input to plant phenology model. This study was carried out to evaluate the performance of the harmonic based daily temperature data in prediction of major phenological developments and to apply the results in improving decision support for agricultural production in relation to the climate change scenarios. Daily maximum and minimum temperature data for a climatological normal year (Jan. 1 to Dec. 31, 1971-2000) were produced by harmonic analysis of the monthly climate means for Seoul weather station. The data were used as inputs to a thermal time - based phenology model to predict dormancy, budburst, and flowering of Japanese cherry in Seoul. Daily temperature measurements at Seoul station from 1971 to 2000 were used to run the same model and the results were compared with the harmonic data case. Leaving no information on annual variation aside, the harmonic based simulation showed 25 days earlier release from endodormancy, 57 days longer period for maximum cold tolerance, delayed budburst and flowering by 14 and 13 days, respectively, compared with the simulation based on the observed data. As an alternative to the harmonic data, 30 years daily temperature data were generated by a stochastic process (SIMMETEO + WGEN) using climatic summary of Seoul station for 1971-2000. When these data were used to simulate major phenology of Japanese cherry for 30 years, deviations from the results using observed data were much less than the harmonic data case: 6 days earlier dormancy release, 10 days reduction in maximum cold tolerance period, only 3 and 2 days delay in budburst and flowering, respectively. Inter-annual variation in phenological developments was also in accordance with the observed data. If stochastically generated temperature data could be used in agroclimatic mapping and zoning, more reliable and practical aids will be available to climate change adaptation policy or decision makers.

Characteristics of nocturnal maximum ozone and meteorological relevance in Pusan coastal area (부산 연안역의 야간 고농도 오존 발생 특성과 기상학적 관련성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.287-292
    • /
    • 1999
  • This study was performed to investigate the characteristics of nocturnal maxiumu ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995~1996 in Pusan coastal area. Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high could amount, low sunshine and low radiation were closely related to the main meteorological characteristics occuring the nocturnal maximum concnetration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concnetration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.

  • PDF

A Geospatial Evaluation of Potential Sea Effects on Observed Air Temperature (해안지대 기온에 미치는 바다효과의 공간분석)

  • Kim, Soo-Ock;Yun, Jin-I.;Chung, U-Ran;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2010
  • This study was carried out to quantify potential effects of the surrounding ocean on the observed air temperature at coastal weather stations in the Korean Peninsula. Daily maximum and minimum temperature data for 2001-2009 were collected from 66 Korea Meteorological Administration (KMA) stations and the monthly averages were calculated for further analyses. Monthly data from 27 inland sites were used to generate a gridded temperature surface for the whole Peninsula based on an inverse distance weighting and the local temperature at the remaining 39 sites were estimated by recent techniques in geospatial climatology which are widely used in correction of small - scale climate controls like cold air drainage, urban heat island, topography as well as elevation. Deviations from the observed temperature were regarded as the 'apparent' sea effect and showed a quasi-logarithmic relationship with the distance of each site from the nearest coastline. Potential effects of the sea on daily temperature might exceed $6.0^{\circ}C$ cooling in summer and $6.5^{\circ}C$ warming in winter according to this relationship. We classified 25 sites within the 10 km distance from the nearest coastline into 'coastal sites' and the remaining 15 'fringe sites'. When the average deviations of the fringe sites ($0.5^{\circ}C$ for daily maximum and $1.0^{\circ}C$ for daily minimum temperature) were used as the 'noise' and subtracted from the 'apparent' sea effects of the coastal sites, maximum cooling effects of the sea were identified as $1.5^{\circ}C$ on the west coast and $3.0^{\circ}C$ on the east and the south coast in summer months. The warming effects of the sea in winter ranged from $1.0^{\circ}C$ on the west and $3.5^{\circ}C$ on the south and east coasts.

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

Calculation of Evapotranspiration Based on Daily Temperature (일단위 온도에 기초한 증발산량의 산정)

  • Oh, Nam-Sun;Lee, Khil-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.479-485
    • /
    • 2004
  • This study presents the calculation of evapotranspiration using estimated daily incoming solar radiation based on maximum daily temperature and minimum daily temperature. The Thornton and Running method(1999) was used to estimate daily incoming solar radiation and then the resulting solar radiation was compared with the measurements. It showed that the estimated daily solar radiation was within reasonable accuracy. In turn, the estimated daily solar radiation was applied to calculate the daily evapotranspiration using the Priestly-Taylor equation and Penman equation and the general results were that evapotranspiration was overestimated in the Priestly-Taylor equation but that Penman was a good estimator with this approach. It is encouraging that it is possible to use this approach, because the required historical data for its estimation are not extensively available and it is not easy to access the meteorological stations in most areas. The calculated eyapotranspiration was compared with that of Hargreaves which was based on daily temperature, and gives us some intuition in terms of engineering.

Leaf Temperature Characteristics being Affected by Light Regimes (광조건에 따른 식물의 엽온 특성)

  • Park, Yong-Mok
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1599-1605
    • /
    • 2011
  • To evaluate heat environment surrounding plants diurnal change of leaf temperature in the broad-leaved deciduous and evergreen trees was measured with microclimatic environmental factors including global solar radiation, and upward and downward long wave radiation. Maximum daily solar radiation was 961.2 and 976.3 w/$m^2$ in August 9 and 23, respectively. Upward long wave radiation was slightly higher than downward long wave radiation, showing 404.2 w/$m^2$ in August 9 and 394.5 w/$m^2$ in August 23. In addition, daily maximum vapor pressure deficit was 5.42 and 6.84 kPa in August 9 and 23, respectively, indicating high evaporative demand. Quercus glauca and Acer mono was differently responded to changing light regimes. On August 9, leaf temperature at the top-positioned leaves of Acer plants was higher than air temperature as well as those of Quercus plants in the morning. This indicates that stomata in Acer plants were closed by heat stress or water stress in the morning, while Quercus plant maintained active transpiration by opening stomata. These results indicated that improved light regimes such as gap opening in the closed forest may not always affect positively in the physiology of understory plants.