• Title/Summary/Keyword: daily maximum temperature

Search Result 405, Processing Time 0.032 seconds

Periodic Variations of Water Temperature in the Seas Around Korea(I) Annual and Secular Variations of Surface Water Temperature, Kumun-Do Region, Southern Sea of Korea (한국 근해 수온의 주기적 변화(I) 남해의 거문도해역 표면수온 년주변화 및 영년변화)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.6-13
    • /
    • 1970
  • Ten days and monthly mean temperatures were analysed daily data observed during July, 1916 to March, 1970 statistically. Periodic characters were calculated by Δn, new method of approximate solution of Schuster Method. According to ten days mean temperatures, annual variation function is F($\theta_d$)=16.29-5.27 cos $\theta_d$+0.75 cos2 $\theta_d$-3.14 sin $\theta_d$+1.16 sin2 $\theta_d$-0.63 sin $\3{theta}_d$, where $\theta_d$=$-\frac{\pi}{18}$(d-3), d is the order of ten days period, 1 to 36. Annual mean water temperature is 16.3$^{\circ}C$, minimum in the last ten days of February 10.9$^{\circ}C$, maximum in the last ten days of August 24.5$^{\circ}C$. Periodic character of secular variation shows 11 year and its curve is F($\theta_y$)=16.29+0.53 cos $\theta_y$ -0.16cos $2{\theta}_y$+0.10 cos$3{\theta}_y$-0.10 sin $\theta_y$, where $\theta_y$=2$-\frac{2\pi}{11}$(y-1920), y is calendar year. And the relation between air temperature x and water temprature y is following. y=9.67 1.035$\^x$

  • PDF

A Study on Identification of the Heat Vulnerability Area - Case Study in Chungcheongnamdo - (폭염 취약지역 도출에 관한 연구 - 충청남도를 대상으로 -)

  • Lee, Gyeongjin;Cha, Jungwoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • This study is to identify the heat vulnerability area as represented by heat risk factors which could be attributable to heat-related deaths. The heat risk factors were temperature, Older Adults(OA), Economic Disadvantage(ED), Accessibility of Medical Services(AMS), The population Single Person Households(SPH). The factors are follow as; the temperature means to the number of days for decades average daily maximum temperature above $31^{\circ}C$, the Older Adults means to population ages 65 and above, furthermore, the Economic Disadvantage means to the population of Basic Livelihood Security Recipients(BLSR), the Accessibility of Medical Services(AMS) means to 5 minutes away from emergency medical services. The results of the analysis are showed that the top-level of temperature vulnerability areas is Dong, the top-level of vulnerability OA areas is Eup, the top-level of AMS vulnerability is Eup. Moreover, the top-level of vulnerability ED area appears in the Eup and Dong. The result of analysing relative importance to each element, most of the Eup were vulnerable to heat. Since, there are many vulnerable groups such as Economic Disadvantage, Older Adults in the Eup. We can be figured out estimated the number of heat-related deaths was high in the Eup and Dong by the data of emergency activation in the Chungcheongnam-do Fire Department. Therefore, the result of this study could be reasonable.

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

Studies on the Environmental Factors for Sap Exudation of Acer mono and the Resource Development of its Community (2): Environmental Factors and Tree Recovery (고로쇠나무(Acer Mono)의 수액출수에 미치는 환경요인과 그 군락의 자원화에 관한 연구 (2): 환경요인 및 공시목의 회복)

  • Kim, Chul-Soo;Kwak, Ae-Kyung
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.533-545
    • /
    • 1994
  • The bleeding of 39 Acer mono trunks by wounding was investigated at the altitudes of 400m, 500m, 800m, and 1100m on Wangsirobong (1,214m), Mt. Chiri area (127°34'E., 35°14'N.) from February 4 to March 21, 1993 and from February 23 to March 23, 1994. The amount of sap in a day was clodely related to the change of air temperature and wind speed. Especially, the abundant sap was exudated at the ranges of -4~13℃ in the daily range of temperature and it was below 0.14m/s in wind speed. The most abundant bleeding was exudated from Acer mono trunk located south facing slope in 800m altitude. Also the amount of sap increased with incereasing suface area of crown. The maximum bleeding of sap was collected from the hole punctured at 80cm height from the ground surface at southern part of the trunks. And the number of exudation holes had an important effect on bleeding of sap but the number of holes should be controlled by DBH of trunks. These results suggested that the exudation was influenced by the daily range of temperature and wind speed. And the altitude, direction of sloped where the trees occurred, surface area of crown, the number of exudation holes, height form the ground surface and the direction of the hole was 91.6% when germicide (Dimethyl-4,4' -ophenylene bis 3-thio alonate) was treated from April to October after bleeding of sap in the year.

  • PDF

Determination of Growth, Yield and Carbohydrate Content of Allium hookeri Grown under Shading Treatment (차광처리에 의한 삼채의 생육, 수량 및 당함량 변화)

  • Kim, Myung Hee;Song, Beong Min;Choi, Eun Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.397-403
    • /
    • 2017
  • Background: This study was aimed at evaluating the growth, yield, and carbohydrate content in the whole Allium hookeri plant with shading treatment in hot summer. Methods and Results: Different shading rate, including 0 (control), 35 or 55%, was employed from the June $21^{st}$ to August $31^{st}$. Daily average air and soil temperature, which were approximately $2.5^{\circ}C$ and $3.8^{\circ}C$ lower, respectively, were observed with both 35% and 55% treatments in July and August, with no significant difference in daily maximum air temperature. Dry weights were high, approximately 40% and 48% for the shoot and 20% and 12% for the root, with the 35% and 55% treatments, respectively, 8 weeks after shading. Division number was increased by 13% and 19.8% with the 35% and 55% treatments, respectively. The mortality rates of 150 plants were 9.1%, 4.0%, and 1.3% with the 0 (control), 35% and 55% treatments, respectively. At 4 weeks after shading, the highest and lowest sucrose levels in both shoot and root were observed with the 35% and 55% treatments, respectively. At 8 weeks after shading, there was no significant difference in the sucrose content in the shoot among the treatments. Conclusions: The highest plant growth rate and yield with the 55% treatment may be related with the decrease in both air and soil temperatures, resulting in reducted leaf respiration and thus compensate net photosynthesis.

Characteristics of Thermal Variations with the Different Land Covers in an Urban Area (도시 지역에서 토지 피복에 따른 열 변이 특성)

  • Park, Sung-Ae;Kong, Hak-Yang;Kim, Seung-Hyun;Park, Sungmin;Shin, Young-Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • This study was conducted to analyze the effect of the different land covers of an urban park (Hyowon park) in downtown Suwon on the urban thermal variations during a hot summer. The effect of the air temperature reduction in the urban park was 4.4%-4.5% for the downtown residence (Maetan-dong). This value was about 0.8% lower than that of the outskirts residence (Sanggwanggyo-dong). The daily mean temperature, daily maximum temperature, summer day and heat wave frequency were measured under the different land covers (cement-block, grass, pine-grass, shading area and mixed forest) showed these values generally decreased under natural land cover types. Daily minimum temperature and tropical night frequency didn't seem to correlate with the land cover types. Means of thermal comfort indices (wet bulb globe temperature, heat index and discomfort index) in the shading area, mixed forest and the pine-grass types were lower than those of cement block and grass types. However the levels of those indices were equal to 'very high' or 'caution' levels in the afternoon (13:00-15:00). In the morning (06:00-08:00), thermal comfort indices of the urban park didn't correlate with land cover types. Therefore, to reduce heat stress and to improve the thermal comfort in urban parks, an increase in the area of natural land cover such as grass, forest and open spaces is required.

Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model (뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok;Park, Jin-Geum
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

PM10 β-ray attenuation samplers (β-ray absorption method) equivalence evaluation and comparatively observed study (PM10 연속자동측정기(β-ray) 등가성평가 및 비교관측 연구)

  • WonSeok Jung;Hee-Jung Ko;Wonick Seo;Jiyoung Jeong;Sang Min Oh;Kyung-On Boo
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The Asian dust observation network operates β-ray attenuation samplers to measure PM10 concentrations. In addition, equivalence evaluation and accuracy inspection(Precision Tests) are conducted every year for the reliability of data. β-ray attenuation samplers(16 units) were comparatively observed from May to June 2020 and from July to December 2021. During the observation period, the average daily temperature was the lowest at 6.4℃ in December and the highest at 27.3℃ in August. The average daily humidity ranged from 60% to 100%, but the average daily humidity was over 75% from July to September. The minimum value of the PM10 Gravimetric method was 5.0 ㎍/m3, the maximum value was 53.4 ㎍/m3, and the average value was 17.8 ㎍/m3. The equivalence evaluation results of the PM10 Gravimetric method and β-ray attenuation samplers satisfied the criteria (slope: 1±0.1, intercept: 0±0.5). A relative error analysis between the PM10 Gravimetric method and β-ray attenuation samplers equipment showed that the relative error increased when the concentration was low and the temperature and humidity were high. In addition, in the β-ray attenuation samplers 5-minute interval observation data in May 2020, a relatively large Standard devication was shown as an average maximum ±23.4 ㎍/m3 and a minimum ±15.2 ㎍/m3. At standard deviations of 10% and 90%, equipment with high variability (deviation) was measured at 6 ㎍/m3and 61 ㎍/m3, and equipment with low variability was measured at 12 ㎍/m3 and 47 ㎍/m3. It was confirmed that concentration differences occurred due to differences in variability for each equipment.

A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring) (전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템)

  • 남석현;이수길;홍진영;김정년;정성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

Analysis of Time Series Models for Ozone Concentrations at the Uijeongbu City in Korea

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1153-1164
    • /
    • 2008
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Uijeongbu monitoring site in Korea. The result showed that both overall and monthly ARE models are suited for describing the ozone concentration. In the ARE model, seven meteorological variables and four pollution variables are used as the as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide(SO2), Nitrogen dioxide(NO2), Cobalt(CO), and Promethium 10(PM10). Also, the high level ozone data (over 80ppb) have been analyzed four ARE models, General ARE, HL ARE, PM10 add ARE, Temperature add ARE model. The result shows that the General ARE, HL ARE, and PM10 add ARE models are suited for describing the high level of ozone data.

  • PDF