• Title/Summary/Keyword: daily maximum/minimum temperature

Search Result 193, Processing Time 0.026 seconds

Characteristics of Thermal Variations with the Different Land Covers in an Urban Area (도시 지역에서 토지 피복에 따른 열 변이 특성)

  • Park, Sung-Ae;Kong, Hak-Yang;Kim, Seung-Hyun;Park, Sungmin;Shin, Young-Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • This study was conducted to analyze the effect of the different land covers of an urban park (Hyowon park) in downtown Suwon on the urban thermal variations during a hot summer. The effect of the air temperature reduction in the urban park was 4.4%-4.5% for the downtown residence (Maetan-dong). This value was about 0.8% lower than that of the outskirts residence (Sanggwanggyo-dong). The daily mean temperature, daily maximum temperature, summer day and heat wave frequency were measured under the different land covers (cement-block, grass, pine-grass, shading area and mixed forest) showed these values generally decreased under natural land cover types. Daily minimum temperature and tropical night frequency didn't seem to correlate with the land cover types. Means of thermal comfort indices (wet bulb globe temperature, heat index and discomfort index) in the shading area, mixed forest and the pine-grass types were lower than those of cement block and grass types. However the levels of those indices were equal to 'very high' or 'caution' levels in the afternoon (13:00-15:00). In the morning (06:00-08:00), thermal comfort indices of the urban park didn't correlate with land cover types. Therefore, to reduce heat stress and to improve the thermal comfort in urban parks, an increase in the area of natural land cover such as grass, forest and open spaces is required.

Simulation of Local Climate and Crop Productivity in Andong after Multi-Purpose Dam Construction (임하 다목적댐 건설 후 주변지역 기후 및 작물생산력 변화)

  • 윤진일;황재문;이순구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.579-596
    • /
    • 1997
  • A simulation study was carried out to delineate potential effects of the lake-induced climate change on crop productivity around Lake Imha which was formed after a multi-purpose dam construction in Andong, Korea. Twenty seven cropping zones were identified within the 30 km by 25 km study area. Five automated weather stations were installed within the study area and operated for five years after the lake formation. A geostatistical method was used to calculate the monthly climatological normals of daily maximum and minimum temperature, solar radiation and precipitation for each cropping zone before and after the dam construction. Daily weather data sets for 30 years were generated for each cropping zone from the monthly normals data representing "No lake" and "After lake" climatic scenarios, respectively. They were fed into crop models (ORYZA1 for rice, SOYGRO for soybean, CERES-maize for corn) to simulate the yield potential of each cropping zone. Calculated daily maximum temperature was higher after the dam construction for the period of October through March and lower for the remaining months except June and July. Decrease in daily minimum temperature was predicted for the period of April through August. Monthly total radiation was predicted to decrease after the lake formation in all the months except February, June, and September and the largest drop was found in winter. But there was no consistent pattern in precipitation change. According to the model calculation, the number of cropping zones which showed a decreased yield potential was 2 for soybean and 6 for corn out of 27 zones with a 10 to 17% yield drop. Little change in yield potential was found at most cropping zones in the case of paddy rice, but interannual variation was predicted to increase after the lake formation. the lake formation.

  • PDF

PM10 Mass Concentration at Keumgangsan, North Korea - from September 2007 to May 2008 - (금강산(金剛山)에서 관측한 미세먼지 농도 - 2007년 9월부터 2008년 5월까지 -)

  • Kim, Jeong Eun;Shim, Wonbo;Lim, Jaechul;Chun, Youngsin
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.447-454
    • /
    • 2011
  • As dust storms originated in Neimongu Plateau and Manchuria became more frequent in Korea, there was a growing need for Asian Dust (Hwangsa) monitoring stations in North Korea, which is a pathway of Asian Dust to South Korea. The South Korean and the North Korean Governments agreed to build the Automatic Weather System and the PM10 measurement instruments in the Gaeseong Industrial Zone and the Keumgangsan Tourist Region, North Korea in 2007. PM10 mass concentration data in the Keumgangsan Tourist Region could be collected only during the period from September 2007 to May 2008. In this study, daily, monthly and diurnal variations of PM10 mass concentration of the Keumgangsan are analyzed and compared with those of Sokcho and Gwangdeoksan. Three sites show similar variations in daily and monthly means. Correlation coefficients (r) between Sokcho and Keumgangsan, and between Gwangdeoksan and Keumgangsan are 0.89 and 0.67, respectively. But diurnal variation at Keumgangsan has a distinct feature compared to the other sites. Diurnal PM10 variation shows two peaks around 8 AM and 4-5 PM and very low at night. The difference between the daily maximum and minimum is $20{\sim}60{\mu}g\;m^{-3}$ during September to November 2007. Temperature, relative humidity and wind speed from the Keumgangsan AWS data were compared with those from the Changjon station, and showed good correlation each other except wind speed.

Urbanization Effect on the Observed Warming in Korea during the Recent Half Century (우리나라의 기온상승-도시효과인가 지구온난화인가)

  • 윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.1
    • /
    • pp.58-63
    • /
    • 2002
  • Since the rapid urbanization period coincides with the start of global warming, climate data might be contaminated with urbanization effect in Korea. Monthly normals of daily minimum, maximum, and mean temperature of 14 stations were calculated for 1951-1980 and 1971-2000 periods. Differences in two temperature normals were regressed to the natural logarithms of population increase at corresponding 14 cities from 1966 to 1990. The regression models were used to remove potential effects of urbanization from the apparent warming, and to determine the net contribution of global warming to the temperature change in Korea during the recent half century. According to the model calculation, there was little evidence of global warming in the warm season (May through November), while urbanization effect was common in all season except April. Up to 0.5$^{\circ}C$ warming of nighttime temperature was found to be induced by urbanization. Cool season temperature was increased by up to 0.6$^{\circ}C$ due mainly to the global warming of daytime temperature.

Regional Crop Evaluation and Yield Forecast of Paddy Rice Based on Daily Weather Observation (일기상자료에 의한 읍면별 벼 작황진단 및 쌀 생산량 예측)

  • Cho Kyung Sook;Yun Jin-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • CERES-rice, a rice growth simulation model, was used in conjunction with daily weather data to figure out the spatial variation of the phenology and yields of paddy rice at 168 rice cultivation zone units(CZU) of Kyunggi Province in 1997. Two sets of cultivar specific coefficients, which represent early and mid-season maturing varieties, were derived from field experiments conducted at two crop experiment stations. The minimum data set to run the model for each CZU (daily maximum and minimum temperature, solar irradiance, and rainfall) was obtained by spatial averaging of existing 'Digital Map of Korean Climate'(Shin et al., 1999). Soil characteristics and management information at each CZU were available from the Rural Development Administration. According to a preliminary test using 5 to 9 years field data, trends of the phasic development(heading and physiological maturity), which were obtained from the model adjusted for these coefficients, were in good agreement with the observed data. However, the simulated inter-annual variation was somewhat greater than the reported variation. Rough rice yields of the early maturing cultivar calculated by the model were comparable with the reported data in terms of both absolute value and inter -annual variation. But those of the mid season cultivar showed overestimation. After running the simulation model runs with 1997 weather data for 168 CZU's, rough rice yields of the 168 CZU's calculated by the model were aggregated into corresponding 33 counties by acreage-weighting to facilitate direct comparison with the reported statistics from the Ministry of Agriculture and Forestry. The simulation results were good at 22 out of the 26 counties with reportedly increasing yield trend with respect to the past 9 years average.

  • PDF

Environment and Development of the Weather Monitoring Application in Kosovo

  • Shabani, Milazim;Baftiu, Naim;Baftiu, Egzon;Maloku, Betim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.371-379
    • /
    • 2022
  • The environment in Kosovo is a topic of concern for the citizens and the state because of the temperatures that affect the health of the citizens and the climate around the world. Kosovo's climate is related to its geographical position. Stretching in the middle latitude, Kosovo's climate depends on the amount of heat coming from the Sun, the proximity of the Adriatic Sea, the Vardar valley, the openness to the north. In order to better understand the climatic features of Kosovo, one must know the elements of the climate such as: sunshine, temperature, precipitation, atmospheric pressure, winds. The Meteorological Institute of Kosovo is responsible for measuring temperatures in Kosovo since 2014 and until now 12 meteorological stations have been operationalized with automatic measurement and real-time data transfer to the central system for data collection and archiving. The hydrometeorological institute lacks an application for measuring temperatures in all the countries of Kosovo. Software applications are generally built to suit the requirements of different governments and clients in order to enable easier management of the jobs they operate on. One of the forms of application development is the development of mobile applications based on android. The purpose of the work is to create a mobile application based on the Android operating system that aims to display information about the weather, this type of application is necessary and important for users who want to see the temperature in different places in Kosovo, but also the world. This type of application offers many options such as maximum temperature, minimum temperature, humidity, and air pressure. The built application will have real and accurate data; this will be done by comparing the results with other similar applications. Such an application is necessary for everyone, especially for those people whose daily work is dependent on the weather or even for those who decide to spend their vacations, such as summer or winter. In this paper, comparisons are also made within android applications for tablets, televisions and smart watches.

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature (수온 상승에 따른 게바다말의 광합성 및 호흡률 변화)

  • Hyegwang Kim;Jong-Hyeob Kim;Seung Hyeon Kim;Zhaxi Suonan;Kun-Seop Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.352-362
    • /
    • 2022
  • Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30℃) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30℃), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R) were highest at 5℃ and declined markedly at higher temperatures with the lowest ratio at 30℃. The minimum requirement of Hsat (the daily period of irradiance-saturated photosynthesis) of P. japonicus was 2.5 hours at 5℃ and 10.6 hours at 30℃ for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area (생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -)

  • Kim, Kyu Rang;Lee, Ji-Sun;Yi, Chaeyeon;Kim, Baek-Jo;Janicke, Britta;Holtmann, Achim;Scherer, Dieter
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture (미래 서울의 여름날씨 전망과 도시농업에의 영향)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2015
  • Climate departure from the past variability was projected to start in 2042 for Seoul. In order to understand the implication of climate departure in Seoul for urban agriculture, we evaluated the daily temperature for the June-September period from 2041 to 2070, which were projected by the RCP8.5 climate scenario. These data were analyzed with respect to climate extremes and their effects on growth of hot pepper (Capsicum annuum), one of the major crops in urban farming. The mean daily maximum and minimum temperatures in 2041-2070 approached to the $90^{th}$ percentile in the past 30 years (1951-1980). However, the frequency of extreme events such as heat waves and tropical nights appeared to exceed the past variability. While the departure of mean temperature might begin in or after 2040, the climate departure in the sense of extreme weather events seems already in progress. When the climate scenario data were applied to the growth and development of hot pepper, the departures of both planting date and harvest date are expected to follow those of temperature. However, the maximum duration for hot pepper cultivation, which is the number of days between the first planting and the last harvest, seems to have already deviated from the past variability.