• Title/Summary/Keyword: daily activity prediction

Search Result 36, Processing Time 0.023 seconds

PREDICTION OF DAILY MAXIMUM X-RAY FLUX USING MULTILINEAR REGRESSION AND AUTOREGRESSIVE TIME-SERIES METHODS

  • Lee, J.Y.;Moon, Y.J.;Kim, K.S.;Park, Y.D.;Fletcher, A.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.99-106
    • /
    • 2007
  • Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a $2{\times}2$ contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' $X^2$ statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

A Prediction on the Conservative Treatment Outcome of TMD Patients by Prognostic Factors (측두하악장애 환자의 보존적 치료결과의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, June-Sang;Ko, Myung-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.2
    • /
    • pp.133-146
    • /
    • 2001
  • This study was performed to predict the conservative treatment outcome of TMD patients by investigating the prognostic factors ; symptom duration, history of previous treatment, history of previous medication, history of trauma, disability of daily activity, severity of pain, noise, limitation of mouth opening(LOM) and maximum comfortable opening(MCO). Two hundreds and fifty-four subjects were selected for this study among the TMD patients who had visited the Dept. of Oral Medicine BNUH and been treated conservatively with medication, physical therapy, behavioral treatment, and splint therapy from 1991 to 2000. The subjects were divided into two groups improved or unimproved according to the treatment response following six months of conservative treatment. Those who showed less than 1 on NAS for pain, TMJ noise, and opening limitation belonged to the improved group and those who showed more than 2 on NAS belonged to the unimproved group. The two groups were compared with respect to symptom severity, number of diagnosis, history of trauma, previous treatment, previous medication, and disability of daily activity. A prognostic equation with the factors revealed to be significantly related to the prognosis of conservative treatment was obtained. The obtained results were as follows ; 1. In improved group, mean duration of history was 12 months, mean treatment duration of a patient was 4 months an mean number of treatment was about 10 times. In other words, in unimproved group, mean duration of history was 27.4 months, mean treatment duration of patient was 10.5 months and mean number of treatment was 19 times. 2. In unimproved group, multiple diagnosis, chronicity, disability of daily activity were significantly greater than that of the improved group. 3. Patients in unimproved group revealed severe noise at first visit and smaller maximum comfortable opening comparatively. 4. Prognostic factors such as duration of treatment, number of treatment, multiplicity, and chronicity and disability of daily activity showed a significant relation in prediction of improvement. 5. Prognostic equation with significant variables is as follows ; Y = 1.984 - 0.251Noise + 0.068MCO - 0.673Multiplicity. - 0.958Chronicity - 0.065Disability. Classification accuracy of 70.3 %, sensitivity of 71.4% and specificity of 66.7% were shown. 6. Prognostic equation with all factors is as follows : Y = 1.599 - 0.038Pain - 0.256Noise - 0.006Limitation + 0.068MCO - 0.580Multiplicity - 1.025Chronicity - 0.720Disability - 0.329Medication - 0.087Treatment + 0.740Trauma. Classification accuracy of 70.3 %, sensitivity of 73% and specificity of 64.3% were shown. 7. Prognostic value of the improved group with significant factors was $1.0446{\pm}1.0726$ and prognostic value of the unimproved group with significant factors was $-0.013{\pm}1.0146$. Prognostic value of the improved group with all factors was $1.0465{\pm}1.0849$ and prognostic value of the unimproved group with all factors was $-0.057{\pm}1.0611$.

  • PDF

Calorie Expenditure Prediction Model of Elderly Living Alone using Motion Sensors for LBS Applications (LBS 응용을 위해 움직임 센서를 이용한 독거노인의 칼로리 소모 예측 모델)

  • Jung, Kyung-Kwon;Kim, Yong-Joong
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper presents calorie expenditure prediction model of daily activity of elderly living alone for LBS(Location Based Service) applications. The proposed method is to describe the daily activity patterns of older adult using PIR (Passive InfraRed) motion sensors and to examine the relationships between physical activity and calorie expenditure. The developed motion detecting system is composed of a sensing system and a server system. The motion detecting system is a set of wireless sensor nodes which has PIR sensor to detect a motion of elder. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to caregivers for more effective services. The experiment results show the adaptability and feasibility of the calorie expenditure model.

Prediction Model of Quality of Life in Elderly Based on ICF Model (ICF 모델에 근거한 노인의 삶의 질 예측 모형)

  • So, Hee-Young;Kim, Hyun-Li;Ju, Kyung-Ok
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.4
    • /
    • pp.481-490
    • /
    • 2011
  • Purpose: The purpose of this study was to identify from the International Classification of Functioning model, factors influencing quality of life in elderly persons and to describe the concrete pathway of influence and the power of each variable. Methods: The sample included 334 elders who lived in 5 districts of D Metropolitan City. A structured questionnaire was used and the collected data were analyzed for fitness, using the AMOS 18.0 program. Results: This model was concise and extensive in predicting the quality of life of elders. The research verified the factors influencing quality of life for elders as direct factors such as activity of daily living (ADL) (${\beta}$=.13, t=2.47), leisure activity (${\beta}$=.55, t=5.04), social disengagement (${\beta}$=-.25, t=-2.25), and depression (${\beta}$=-.62, t=-10.86). Indirect factors including economic status (${\gamma}$=.17, p=.009), type of residence (${\gamma}$=.19, p=.004), ADL (${\gamma}$=.12, p=.027) were important factors in predicting quality of life for elders. These variables explained 75.6% of variance in the prediction model. Conclusion: The findings indicate a need for the nursing scientific community to develop intervention programs considering these variables to improve the quality of life for elders.

Smartphone-User Interactive based Self Developing Place-Time-Activity Coupled Prediction Method for Daily Routine Planning System (일상생활 계획을 위한 스마트폰-사용자 상호작용 기반 지속 발전 가능한 사용자 맞춤 위치-시간-행동 추론 방법)

  • Lee, Beom-Jin;Kim, Jiseob;Ryu, Je-Hwan;Heo, Min-Oh;Kim, Joo-Seuk;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • Over the past few years, user needs in the smartphone application market have been shifted from diversity toward intelligence. Here, we propose a novel cognitive agent that plans the daily routines of users using the lifelog data collected by the smart phones of individuals. The proposed method first employs DPGMM (Dirichlet Process Gaussian Mixture Model) to automatically extract the users' POI (Point of Interest) from the lifelog data. After extraction, the POI and other meaningful features such as GPS, the user's activity label extracted from the log data is then used to learn the patterns of the user's daily routine by POMDP (Partially Observable Markov Decision Process). To determine the significant patterns within the user's time dependent patterns, collaboration was made with the SNS application Foursquare to record the locations visited by the user and the activities that the user had performed. The method was evaluated by predicting the daily routine of seven users with 3300 feedback data. Experimental results showed that daily routine scheduling can be established after seven days of lifelogged data and feedback data have been collected, demonstrating the potential of the new method of place-time-activity coupled daily routine planning systems in the intelligence application market.

A Genetic Algorithm-based Classifier Ensemble Optimization for Activity Recognition in Smart Homes

  • Fatima, Iram;Fahim, Muhammad;Lee, Young-Koo;Lee, Sungyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2853-2873
    • /
    • 2013
  • Over the last few years, one of the most common purposes of smart homes is to provide human centric services in the domain of u-healthcare by analyzing inhabitants' daily living. Currently, the major challenges in activity recognition include the reliability of prediction of each classifier as they differ according to smart homes characteristics. Smart homes indicate variation in terms of performed activities, deployed sensors, environment settings, and inhabitants' characteristics. It is not possible that one classifier always performs better than all the other classifiers for every possible situation. This observation has motivated towards combining multiple classifiers to take advantage of their complementary performance for high accuracy. Therefore, in this paper, a method for activity recognition is proposed by optimizing the output of multiple classifiers with Genetic Algorithm (GA). Our proposed method combines the measurement level output of different classifiers for each activity class to make up the ensemble. For the evaluation of the proposed method, experiments are performed on three real datasets from CASAS smart home. The results show that our method systematically outperforms single classifier and traditional multiclass models. The significant improvement is achieved from 0.82 to 0.90 in the F-measures of recognized activities as compare to existing methods.

Activity recognition of stroke-affected people using wearable sensor

  • Anusha David;Rajavel Ramadoss;Amutha Ramachandran;Shoba Sivapatham
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1079-1089
    • /
    • 2023
  • Stroke is one of the leading causes of long-term disability worldwide, placing huge burdens on individuals and society. Further, automatic human activity recognition is a challenging task that is vital to the future of healthcare and physical therapy. Using a baseline long short-term memory recurrent neural network, this study provides a novel dataset of stretching, upward stretching, flinging motions, hand-to-mouth movements, swiping gestures, and pouring motions for improved model training and testing of stroke-affected patients. A MATLAB application is used to output textual and audible prediction results. A wearable sensor with a triaxial accelerometer is used to collect preprocessed real-time data. The model is trained with features extracted from the actual patient to recognize new actions, and the recognition accuracy provided by multiple datasets is compared based on the same baseline model. When training and testing using the new dataset, the baseline model shows recognition accuracy that is 11% higher than the Activity Daily Living dataset, 22% higher than the Activity Recognition Single Chest-Mounted Accelerometer dataset, and 10% higher than another real-world dataset.

Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea (CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가)

  • Lee, Jinheon;Lee, Minwoo;Park, Changyong;Park, Sanghyun;Song, Youngho;Kim, Ok;Shin, Jihun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.

Multi-Modal Wearable Sensor Integration for Daily Activity Pattern Analysis with Gated Multi-Modal Neural Networks (Gated Multi-Modal Neural Networks를 이용한 다중 웨어러블 센서 결합 방법 및 일상 행동 패턴 분석)

  • On, Kyoung-Woon;Kim, Eun-Sol;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.104-109
    • /
    • 2017
  • We propose a new machine learning algorithm which analyzes daily activity patterns of users from multi-modal wearable sensor data. The proposed model learns and extracts activity patterns using input from wearable devices in real-time. Inspired by cue integration of human's property, we constructed gated multi-modal neural networks which integrate wearable sensor input data selectively by using gate modules. For the experiments, sensory data were collected by using multiple wearable devices in restaurant situations. As an experimental result, we first show that the proposed model performs well in terms of prediction accuracy. Then, the possibility to construct a knowledge schema automatically by analyzing the activation patterns in the middle layer of our proposed model is explained.