
OR I G I NAL ART I C L E

Activity recognition of stroke-affected people using
wearable sensor

Anusha David1 | Rajavel Ramadoss1 | Amutha Ramachandran1 |

Shoba Sivapatham2

1ECE Department, SSN College of
Engineering, Kalavakkam, Chennai,
Tamil Nadu, India
2Center for Advanced Data Science
(CADS), Vellore Institute of Technology,
Chennai Campus, Chennai, Tamil Nadu,
India

Correspondence
Shoba Sivapatham, Center for Advanced
Data Science (CADS), Vellore Institute of
Technology, Chennai Campus, Chennai,
Tamil Nadu, India.
Email: shoba.s@vit.ac.in

Abstract

Stroke is one of the leading causes of long-term disability worldwide, placing

huge burdens on individuals and society. Further, automatic human activity rec-

ognition is a challenging task that is vital to the future of healthcare and physical

therapy. Using a baseline long short-term memory recurrent neural network, this

study provides a novel dataset of stretching, upward stretching, flinging motions,

hand-to-mouth movements, swiping gestures, and pouring motions for improved

model training and testing of stroke-affected patients. A MATLAB application is

used to output textual and audible prediction results. A wearable sensor with a

triaxial accelerometer is used to collect preprocessed real-time data. The model is

trained with features extracted from the actual patient to recognize new actions,

and the recognition accuracy provided by multiple datasets is compared based on

the same baseline model. When training and testing using the new dataset, the

baseline model shows recognition accuracy that is 11% higher than the Activity

Daily Living dataset, 22% higher than the Activity Recognition Single Chest-

Mounted Accelerometer dataset, and 10% higher than another real-world dataset.
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1 | INTRODUCTION

Sensor-based human activity recognition (HAR) is a chal-
lenging and important form of healthcare assistance for
the elderly and physically/mentally disabled people who
wish to live independently in their homes, as opposed to
in an institutional care facility. Researchers have used
several types of wearable sensors to capture and recog-
nize HAR data, and some of the most widely used sensors
include triaxial accelerometers and gyroscopes. With
these, researchers have employed a variety of algorithmic
methods to interpret the data. Recently, deep-learning

algorithms [1, 2] have been employed for this purpose,
showing very promising performance. Such approaches
[3] combine shallow and learned features taken from an
inertial sensor for time-series data classification. Another
study [3] addressed some of the problems with deep
learning frameworks when on-node computation was
required, and a semisupervised deep temporal long short-
term memory (LSTM) ensemble method was proposed
[4] for HAR using smartphone inertial sensors. This
method provided significant improvements over other
semisupervised techniques that rely on various propor-
tions of labeled training data.
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Smartphone-based convolutional neural networks
(CNNs) have been proposed for HAR [5], and to boost
their accuracy, CNN-based ensemble models have incor-
porated local dependencies and scale-invariant aspects of
sensor time-series data, resulting in a very high 96.11 %
recognition accuracy. Another study [6] proposed a HAR
method that uses data obtained from a single triaxial
accelerometer. The model transforms the accelerometer
data into square acceleration images. An overview of
HAR methods using smartphone inertial sensor data was
presented in [7], and the model of [8] provided an effi-
cient CNN-based HAR method that uses an encoding
technique to transform inertial sensor inputs into a differ-
ent picture format. Those authors compared their model
performances using their own datasets and other public
datasets. A novel approach was proposed in [9] that oper-
ates in unconstrained HAR environments (e.g., Apple
TV, Apple Watch, Apple Remote, and iPhone), demon-
strating how a CNN with discrete cosine transform) as a
feature improves accuracy in HAR. The researchers of
[10] presented a new CNN-based HAR model that used
signals from magnetometers, accelerometers, and gyro-
scopes embedded in smartphones. Relatedly, accurate
HAR detection was achieved by integrating photoplethys-
mography and triaxial accelerometer signals, achieving
an accuracy of 95% with less memory and computational
power burdens than other models [11]. The cost, power,
and complexity of HAR devices were reduced by using
low-cost recurrent neural networks (RNNs) that inter-
faced with embedded cloud-based microcontrollers for
processing. The related model provided an accuracy of
90.50% with less overall time and resources [12].

A CNN-based ensemble approach was proposed to
resolve the uncertainty between various HAR activities,
achieving an accuracy of 96.29.

All of the above-mentioned studies focused mainly on
the recognition of common activities, neglecting special
behaviors. In this direction, Bensalah and others devel-
oped an upper-limb assessment system specifically for
stroke-affected patients using data collected from digital
watches. Their assessment system automatically detects
and recognizes a variety of constrained activities [13].
Braakhuis and others developed a day-to-day activity
stroke monitoring system for routine physical therapy. A
therapist-based survey indicated that the system was the
most useful among the available tools, but this monitor-
ing system was used by only 27% of the patients. Hence,
proper education of its usage and benefits were found to
lead to more efficient monitoring of stroke affected
people’s activities [14].

A general HAR system architecture using wearable
sensors is presented in Figure 1 based on extant studies.
The present study takes a different approach to dataset
construction by considering the recognition of special

activities, such as forward stretching, upward stretching,
flinging motions, hand-to-mouth actions, swiping gestures,
and pouring. Because a stroke-victim activity dataset of
this nature is unavailable to the public, this work provided
one with the support of student volunteers. A real-time
HAR system was built using a standard LSTM-RNN base-
line, and MATLAB was used to produce an application
that converts the model output to textual and audible
formats, which can be used to directly assist caretakers to
fulfill their needs in time. Model performance based on
training and testing with our new dataset was compared
with those of other publicly available datasets, and the
proposed system with its dataset showed the highest recog-
nition accuracy. Detailed comparisons are provided in the
Results and Discussion sections.

The rest of this study is constructed as follows.
Section 2 examines a few other HAR datasets. The
LSTM-RNN model and its components are described in
Section 3. This is followed by Section 4, which presents
an evaluation of the performance, and Section 5 presents
conclusions and future research recommendations.

2 | REVIEW OF EXTANT HAR
DATASETS

Various HAR datasets are available freely to researchers.
Table 1 highlights some of these with additional details,
such as the number of participants, activities, sensor
used, and the location of the sensor. The activities of
daily living (ADL) dataset [15] provides labeled record-
ings of simple human activities, and the data were col-
lected using a wrist-placed accelerometer mainly
targeting the recognition of common daily activities.

The Activity Recognition from a Single Chest-Mounted
Accelerometer (ARSC-MA) dataset [16] supports the
identification and verification of persons based on their
mobility patterns. A wearable accelerometer sensor is
placed on the chest, and stair-climbing, standing, talking,
walking, and working activities are predicted. A real-world
dataset was developed to support this real-time HAR tool
using mobile-device sensors [17]. A triaxial accelerometer
sensor is placed on the waist for data collection, and raw
data are transformed into monochrome and colored
images [18]. A stroke-patient dataset created by the
researcher in [19] contains healthy and stroke HAR data
from 17 patients. Another dataset was created by [20] from

F I GURE 1 General human activity recognition architecture

for wearable device data collection.
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home and laboratory experiments reflecting specific gait
improvements in stroke patients and healthy patients for
various activities of HAR.

The Center for Machine Learning and Intelligent
Systems (UCI) HAR dataset is the most popular [21] and
contains preprocessed sensor input and feature vectors
obtained from the time-frequency domain. This dataset
was developed to recognize human activities in [21] using
triaxial accelerometer smartphone data.

The datasets highlighted thus far focus mainly on
common activities, which may not be suitable for actual
stroke-patient monitoring. Hence, in this study, a new
dataset using triaxial accelerometer data is provided. The
details, including the actions and recording environ-
ments, are discussed in the following section.

3 | PROPOSED REAL-TIME HAR
DATASET

The proposed dataset as applied to the baseline LSTM-
RNN is illustrated in Figure 2. Activities such as for-
ward stretching, upward stretching, flinging, hand-to-
mouth movements, swiping, and pouring are covered.
Using the additional MATLAB application, the recog-
nized activities are displayed in real time as textual and
audible outputs. The following subsection explains the
data collection, feature extraction, and network training
and testing.

3.1 | Data acquisition and preprocessing

Because this work is a special case that focuses on stroke-
affected patients HAR, the dataset was collected by the
authors using a Shimmer-brand sensor that provides
wireless connectivity [22]. The Shimmer brand offers
comprehensive wearable sensor solutions for medical,
neurological, and clinical research industries using wear-
able inertial measurement embedded devices that include
accelerometers, gyroscopes, and magnetometers. Real-
time kinematic data were captured from the sensors, and
the gathered data were broadcast to a Bluetooth-enabled
data collection device.

In this study, 28 healthy persons (18 males and
20 females) participated, and their data are summarized
in Table 2. The individuals wore an accelerometer sensor
(AS) while performing the prescribed tasks. The AS is a
device that measures the force of acceleration. The
acquired data were transmitted via Bluetooth to a laptop
running Windows 10 with preinstalled Consensys Pro
software. The participants, who were trained to perform
six specific actions, were seated comfortably in chairsT
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facing a computer. Each participant was required to
repeat each action 10 times. The details and a sample
photo are shown in Figure 3. The collected sensor data
were preprocessed for feature extraction.

• Action 1—Forward stretch: The person stretches
his/her forearm in a forward direction.

• Action 2—Upward stretch: The person stretches
his/her hand in an upward direction

• Action 3—Fling: The person pretends to throw a
virtual object in a forward direction

• Action 4—Hand-to-mouth: The person brings
his/her arm near to the mouth and returns it to its
initial position.

• Action 5—Swipe: The person stretches his/her hand
and swipes in the clockwise direction.

• Action 6—Pouring: The person pretends to clutch a
virtual object and pours by rotating the wrist.

3.2 | Feature extraction

Reliable features are crucial to classification tasks [23],
and some researchers have used raw signals directly for
this purpose. However, raw signals are not viable for
compiling larger datasets. In this study, reliable features
were retrieved from the raw acceleration data first, and

used for model training to speed-up the process and
improve recognition accuracy. The following 20 features
were extracted:

1. Mean ðμÞ: The arithmetic mean (average) of a set of
numbers.

μ¼ 1
n

Xn
i¼1

xi: ð1Þ

2. Standard deviation ðσÞ: The amount of deviation of
values or average mean data,

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðxi�μÞ2
s

: ð2Þ

3. Index of dispersion (D): The ratio of variance to
mean,

D¼ σ2

μ
: ð3Þ

4. Absolute difference (A): The measure of absolute
difference between two variables,

A¼ jx� yj≥ 0: ð4Þ

5. Maximum peak amplitude (P): The amplitude of a
wave at its greatest magnitude of deflection,

P¼Asinð2∗π ∗ f ∗ tÞ: ð5Þ

6. Information entropy (E): The negative logarithm of
the probability mass function of the value (for each
possible data value),

F I GURE 2 Proposed human

activity recognition system.

TAB L E 2 Details of participants in the dataset compilation.

Total persons Males Females Age (avg) Weight (avg) Height (avg)

38 18 20 24 (years) 65 (kg) 5.3 (ft)

F I GURE 3 Sample image (photo) of a person performing the

six actions.
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E¼
Xn
i¼1

pi log2
1
pi

� �
: ð6Þ

7. Skewness (S): The asymmetry of a real-valued
random variable’s probability distribution around its
mean,

S¼
Xn
i¼1

xi�μð Þ3
n

σ3
: ð7Þ

8. Kurtosis (K): The determinant of whether data are
heavy- or light-tailed compared with a normal
distribution,

K ¼
Xn
i¼1

xi�μð Þ4
n

σ4
: ð8Þ

9. Root mean square (RMS): The square root of the of
the squares of a group of values,

RMS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x
2
i

n

r
: ð9Þ

10. Amplitude (y): The displacement of a particle of a
medium (represented by A).

A¼ sinðωtþϕÞ ð10Þ

11. Median absolute (MA): The variability of a univari-
ate sample of quantitative data,

MA¼
Xn
i¼1

xi�μ

n

��� ���: ð11Þ

12. Cross-correlation coefficient (r): The similarity of
two series as a function of the distance between each
value,

r¼ n
Pn

i¼1xy
� �� Pn

i¼1x
� � Pn

i¼1y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1x
2� Pn

i¼1x
2

� �� 	
n
Pn

i¼1 y
2� Pn

i¼1y
2

� �� 	q :

ð12Þ

13. Mean absolute deviation (MAD): The average
distance between each data point and the mean,

MAD¼
Xn
i¼1

xi��x
x

����
����: ð13Þ

14. Covariance (cov): The measure of two random
variables’ combined variability,

cov¼
Xn
i¼1

ðxi� xÞ
n

: ð14Þ

15. Variance ðσ2Þ: The expectation of a random vari-
able’s squared variation from its mean,

σ2 ¼
Xn
i¼1

ðx2�μ2Þ
n

: ð15Þ

16. Band power (BP): The typical power within a
frequency range, specified as a two-element vector,

BP¼ cosð2 � π � 100 � xiÞ: ð16Þ

17. Cross-correlation (rk): The relationship between
measures with the same maximum and minimum
values in different time-series,

rk¼
Xn
i¼1

ðxi� xÞ
ðxi�xÞ2 : ð17Þ

18. Interquartile range (IQR): The variation between the
upper and lower quartile values in a collection of data,

IQR¼ 3ðnþ1Þ
4

� �
� nþ1

4

� �
: ð18Þ

19. Norm (N): The sum of the squares of a complex
number’s real and imaginary components, or
the positive square root of this sum, providing
the product of a complex number and its conjugate,

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ja2i j
s

: ð19Þ

20. Median: The value that separates the data’s upper
and lower halves,

Median¼ nþ1
4

� �th

term: ð20Þ

3.2.1 | LSTM-RNN classifier

An RNN is a generalized version of a feed-forward neural
network with indoor memory. The advantage of an RNN

F I GURE 4 Architecture of a simple recurrent neural network

for classification.

DAVID ET AL. 1083



is that it can model time series data such that each sam-
ple is assumed to be dependent. The LSTM network is an
augmented RNN that simplifies past data recall. Hence, it
is well-suited for classifying and predicting statistics
when there are time lags of unknown durations [24].

This study used the LSTM network to train and clas-
sify the designated actions of stroke-affected patients. The
baseline LSTM-RNN network architecture is shown in
Figure 4, in which the sequence input layer precedes the
LSTM layer. To forecast the class label activities, the net-
work includes a fully connected layer, a SoftMax layer,
and an output layer. The LSTM-RNN was designed using
MATLAB to recognize the activities, as shown in
Figure 5. The extracted features are fed into the sequence

input layer of the LSTM, which has 1000 hidden units to
process the input feature sequence using a backpropaga-
tion algorithm. The detailed hyperparameters are shown
in Table 3. Finally, to provide the final HAR output, the
fully connected layer with the SoftMax activation function
classifies the processed feature sequence into label classes.

4 | EXPERIMENTAL RESULTS
AND DISCUSSIONS

The experimental outcomes of the proposed stroke-
affected HAR model are presented in this section based
on the prepared dataset comprising the six chosen activi-
ties of stroke-affected patients. The dataset was acquired
from 38 participants (18 male and 20 female) who wore
wearable accelerometer sensors on their right wrists. A
total of 2280 samples were recorded, There were 10 sam-
ples for each activity. From all samples, 1824 (80%) were
used for training, and 456 (20%) were used for testing.
The proposed and compared model configurations were
evaluated using precision, recall, accuracy, and F1 score.

Precision is the ratio of the number of correct positive
correct ðPcÞ to the total number of positive correct ðPcÞ
and positive incorrect ðPIcÞ estimates. The overall accu-
racy of the precision measure is classified as a positive
estimate,

Precision¼ Positive correct ðPcÞ
ðPositive correct ðPcÞþPositive incorrect ðPIcÞ

:

ð21Þ

Recall is the ratio of the number of positive correct
guesses ðPcÞ to the total number of positive correct ðPcÞ
and negative incorrect ðNIcÞ guesses. An increase in the
recall value indicates a more positive estimate,

F I GURE 5 Designed long short-term memory network for human activity recognition.

TAB L E 3 Hyperparameters used to fine-tune the long short-

term memory recurrent neural network model.

Parameters Range

Number of input nodes 240 � 6

Number features 20

Hidden units 1000

Batch size 64

Number of output nodes 240 � 1

Activation (hidden) Rectified linear unit

Activation (output) SoftMax

MaxEpochs 100

Learning method Adam

Learning rate 0.001

Dropout rate 0.2

Classes 6

Validation data 10%

Cost function Mean squared error

1084 DAVID ET AL.



Recall¼ Positive correcta ðPcÞ
ðPositive correct ðPcÞþNegative incorrect ðNIcÞ

:

ð22Þ

The F1 score is a single metric that combines preci-
sion and recall (harmonic mean),

F1 Score¼ 2∗ ðPrecision� RecallÞ
ðPrecisionþRecallÞ : ð23Þ

Accuracy reflects the performance across all classes,
which is beneficial when all classes are equally essential.

It is defined as the ratio of the total number of samples,
PcþNcþPIc þNIc , to the sum of the number of correct
positive guesses ðPcÞ and incorrect positive guesses ðNcÞ,

Accuracy¼ PcþNc

PcþNcþPIc þNIc
: ð24Þ

The proposed model is illustrated in Figure 6. All
456 testing samples were tested individually to measure

F I GURE 6 Proposed stroke-affected human activity

recognition model.

TAB L E 4 Recognition accuracy of our model with our

prepared dataset compared with the same model with other

datasets.

Data sets
Classification
algorithm

Training
accuracy

Testing
accuracy

ADL [13] RNN - LSTM 93% 78%

ARSC-MA [14] RNN - LSTM 94% 67%

Real-world [15] RNN - LSTM 98% 79%

Proposed RNN - LSTM 100% 89%

F I GURE 7 Performance confusion matrix for the long short-

term memory recurrent neural network model based on training

and testing with different datasets.

F I GURE 8 Score comparisons of the proposed long short-term

memory recurrent neural network model trained and tested with

the ARSC-MA dataset.

F I GURE 9 Score comparisons of the proposed long short-term

memory recurrent neural network model trained and tested with

the ADL dataset.

F I GURE 1 0 Score comparisons of the proposed long short-

term memory recurrent neural network model trained and tested

with the real-world dataset.
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recognition accuracy (see Table 4). Using the proposed
dataset, the model provided a recognition accuracy of
89%, which is greater than that of other datasets. A con-
fusion matrix is displayed in Figure 7, where it can be
seen that, apart from the upward stretching motion, all
other classes had nearly equal classification accuracies of
88%. The upward stretch motion achieved a maximum
classification accuracy of 93.14%. The same trend was

observed in precision, recall, and F1 score (see
Figures 8–11 and Table 5).

Table 4 shows that the proposed system configuration
using the prepared dataset improved recognition accu-
racy by 11% over the ADL dataset, 22% over the ARSC-
MA dataset, and 10% over the real-world dataset. From
the observations listed in Table 5, the precision, recall,
and F1 results of the proposed configuration with the pre-
pared dataset were the best.

The baseline model was trained and tested using the
ARSC-MA dataset focusing on the activities as shown in
Figure 8. The real-time recognition accuracy was 67%,
which was much lower than that of the model when tested
and trained using the proposed dataset. The precision, recall,
and F1 scores for ARSC-MA were 19%–20% lower. t

The baseline model was trained and tested using the
ADL dataset focusing on the activities shown in Figure 8.
The real-time recognition accuracy was 78%, which is
nearly 11% lower than that of the model when tested and
trained using the proposed dataset. The precision, recall,
and F1 scores for ADL were 7%–8% lower, as shown in
Figure 9. Finally, the model was trained and tested using
the real-world dataset focusing on the activities shown in
Figure 10. The real-time recognition accuracy was 79%,
which is nearly 10% lower than that of the model when
tested and trained using the proposed dataset. The

F I GURE 1 1 Score comparisons of the proposed long short-

term memory recurrent neural network trained and tested with the

proposed dataset.

TAB L E 5 Performance measures of different datasets and their respectively compared activities.

Activity

ADL

Activity

ARSC-MA

Precision Recall F1 score Precision Recall F1 score

Climb stairs 0.830 0.790 0.810 Standing up 0.740 0.820 0.778

Drink glass 0.920 0.890 0.905 Walking and Going up Down stairs 0.720 0.734 0.727

Get up bed 0.880 0.850 0.865 Going up Down stairs 0.780 0.745 0.762

Stand up chair 0.780 0.800 0.790 Standing 0.690 0.645 0.667

Sit down chair 0.810 0.780 0.795 Walking and talking with someone 0.711 0.698 0.704

Pouring water 0.870 0.890 0.880 Talking while standing 0.722 0.735 0.728

Walking 0.73 0.722 0.75

TAB L E 5 (Continued)

Activity Activity

Real-world

Activity

Proposed

Precision Recall F1 score Precision Recall F1 score

Climb stairs Climbing up 0.877 0.843 0.860 Forward stretch 0.911 0.923 0.917

Drink glass Climbing down 0.817 0.837 0.827 Upward stretch 0.962 0.913 0.937

Get up bed Jumping 0.804 0.812 0.808 Fling 0.923 0.931 0.927

Stand up chair Lying 0.900 0.911 0.905 Hand to mouth 0.922 0.934 0.928

Sit down chair Sitting 0.866 0.890 0.878 Swipe 0.911 0.900 0.905

Pouring water Standing 0.788 0.766 0.777 Pouring 0.923 0.925 0.924

Walking 0.820 0.788 0.866

1086 DAVID ET AL.



precision, recall, and F1 scores for the real-world dataset
were 13%–18% lower, as shown in Figure 11.

As shown in Figure 12, the classification accuracy of
the baseline model when trained using the specially
designed dataset was 89.11% after 100 epochs, which is
significantly better than the classification accuracies from
the other datasets. Notably, the activities and devices
used to prepare all datasets differed. Therefore, strictly
comparing the performance may not be fair and mean-
ingful. Hence, we used several metrics, as shown in the
figures and tables above.

5 | CONCLUSIONS

A new dataset to be used for the real-time activity rec-
ognition of stroke-affected patients was provided in this
study. The six frequent recognition activities covered by
the dataset included forward stretching, upward stretch-
ing, flinging, hand-to-mouth, swiping, and pouring. The
new dataset comprises data collected using a Shimmer-
brand device equipped with an accelerometer. The data-
set was preprocessed, and 20 common features were
extracted. A standard LSTM-RNN was trained and
tested to recognize activities in real time. The recog-
nized activities were provided as text and sound output
using a specially designed MATLAB application that we
provided. To validate the reliability of the model when
trained and tested using the new dataset, recognition
accuracies were compared using the same model
trained and tested using all datasets. The proposed data-
set resulted in considerably better performance,

achieving 89% recognition accuracy: 14% better than
the others. There is plenty of room for improvement,
such as by increasing the recognition accuracy to higher
than 89%. Additionally, the Shimmer-brand accelerome-
ter could be replaced with a camera for real-time
visual HAR.
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