• 제목/요약/키워드: dTDP-glucose

검색결과 24건 처리시간 0.024초

Actinodura roseorufa에서 생산되는 UK-58,852로부터 PKS type I 에 관련된 생합성 유전자의 분리 및 분석

  • 김자용;이주호;김대희;김동현;송재경;이희찬
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.660-664
    • /
    • 2000
  • UK-58,852의 생합성에 관여하는 유전자를 분리하기 위해 Actinomadura roseorufa의 genomic DNA와 E. coli-Streptomyces shuttle cosmid vector인 pOJ446이 genomic library를 만들었다. Genomic library는 dehydratase PCR product와 eryA 유전자를 probe로 하여 sugar 생합성 유전자와 polyketide typel 유전자가 집단으로 존재하는 cosmid pHD54를 분리하였고, 이를 제한 효소인 BamHI, SmaI와 Sonicater를 이용해서 subcloning 하였다. 이들의 염기서열을 부분 분석한 결과, polyketide 생합성에 관여하는 ketoacyl synthase, methylmalonyl acyltransferase, ketoreductase, enolreductase 그리고 PKS loading domain 등 polyketide synthase type I 임을 보여주고 있고, BLAST 분석된 결과를 보면 polyketide synthase 유전자는 rifamycin 생합성 유전자와 유사성이 높다. 그리고 sugar 생합성에 관여하는 유전자로는 oxidoreductase, dTDP-D-glucose 4,6 dehydratase, dTDP-D-glucose synthase 그리고 dTDP-4-keto-6-deoxy-D-glycose 3,5-epimerase으로 구성된 gene cluster를 확인하였다. 그리고 염기서열 분석된 유전자중 dTDP-D-glucose synthase를 발현하여 유전자의 기능을 확인하였다.

  • PDF

Cloning and Expression of Glucose-1-Phosphate Thymidylyltransferase Gene (schS6) from Streptomyces sp. SCC-2136

  • Han, Ji-Man;Kim, Su-Min;Lee, Hyo-Jung;Yoo, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.685-690
    • /
    • 2007
  • The deoxysugar biosynthetic gene cluster of Sch 47554/Sch 47555 was cloned from Streptomyces sp. SCC-2136. One of the ORFs, schS6, appeared to encode glucose-1-phosphate thymidylyltransferase, which converts dTTP and glucose-1-phosphate to TDP-D-glucose and pyrophosphate. The dTDP-D-glucose is a key metabolite in prokaryotics as a precursor for a large number of modified deoxysugars, and these deoxysugars are a maj or part of various antibiotics, ranging from glycosides to macrolides. SchS6 was expressed in E. coli vector pSCHS6 and the expressed protein was purified to apparent homogeneity by ammonium sulfate precipitation and Ni-NTA affinity column chromatography. The specific activity of the purified enzyme increased 4.7-fold with 17.5% recovery. It migrated as a single band on SDS-PAGE with an apparent molecular mass of 56kDa. The purified protein showed glucose-1-phosphate thymidylyltransferase activity, catalyzing a reversible bimolecular group transfer reaction. In the forward reaction, the highest activity was obtained with combination of dTTP and ${\alpha}-D-glucose-1-phosphate$, and only 12% of that activity was obtained with the substrates $UTP/{\alpha}-D-glucose-1-phosphate$. In the opposite direction, the purified protein was highly specific for dTDP-D-glucose and pyrophosphate.

Salmonella typhimurium의 Deoxy-Thymidine Diphosphate-D-Glucose-4, 6-Dehydratase의 결정화와 X-선 회절에 관한 연구 (Crystallization and Preliminary X-ray diffraction Studies of Salmonella typhimurium Deoxy-Thymidine Diphosphate-D-Glucose-4, 6-Dehydratase)

  • 최희욱;박교선
    • 한국결정학회지
    • /
    • 제7권2호
    • /
    • pp.120-125
    • /
    • 1996
  • Salmonella typhimurium LT2에서 deoxy-thymidine diphosphate-D-gluxose-4,6-dehydratase의 유전자를 재조합한 Escherichia coli BL21 clone으로부터 dTDP-D-glucose dehydratase를 분리 정제한 후, 이 효소의 단결정을 상온에서 sitting drop 기체확산법으로 성장시켰다. 결정은 효소에 기질이 포함되어 있는 것과 포함되어 있지 않는 것 모두가 얻어지며, 이 때 침전제는 1.6-2.0 M Na, K 인산 완충용액(pH 8.0)을 사용하였다. 이 단결정은 최소 2.5Å의 분해능으로 회절하였으며, 공간군은 hexagonal한 P61이고, 격자의 크기는 a=b=168.54Å, c=81.08Å이었다. Asymmetric unit에는 이량체 한분자를 포함하고 있으며 단백질 질량당 결정의 부피는 VM=2.4Å3/Da, 용매의 함유율은 부피를 기준으로 64%였다.

  • PDF

Overexpression, Purification and Truncation Analysis of RmlC Protein of Mycobacterium tuberculosis

  • Lee, Jong-Seok;Lee, Tae-Yoon;Park, Jae-Ho;Kim, Jong-Sun;Lee, Tae-Jin;Lee, Jai-Youl;Kim, Sung-Kwang
    • 대한미생물학회지
    • /
    • 제35권4호
    • /
    • pp.273-282
    • /
    • 2000
  • dTDP-rhamnose provides L-rhamnose to the bridge-like structure between mycolyl arabinogalactan and peptidoglycan of the mycobacterial cell wall. dTDP-rhamnose is composed of glucose-l-phosphate and dTTP by four enzymes encoded by rmlA-D. To determine the region(s) of RmlC protein essential for its dTDP-4-keto-6-deoxyglucose epimerase activity, we overexpressed both whole (202 amino acids) and three different truncated (N-terminal 106 or 150 or C-terminal 97 amino acids) RmlC proteins of Mycobacterium tuberculosis. The RmlC enzyme activity in the soluble lysates of ${\Delta}rmlC$ E. coli strain $S{\Phi}874$ (DE3 PlysS) expressing the wild type or truncated rmlC genes was initially analyzed by three sequential reactions from dTDP-glucose to dTDP-rhamnose in the presence of purified RmlB and RmlD. All three soluble lysates containing the truncated RmlC proteins showed no enzyme activity, while that containing the wild type RmlC was active. This wild type RmlC was then overexpressed and purified. The incubation of the purified RmlC enzyme so obtained with dTDP-4-keto-6-deoxyglucose resulted in the conversion of dTDP-4-keto-rhamnose. The results show that the truncated regions of the RmlC protein are important for the RmlC enzyme activity in M. tuberculosis.

  • PDF

Acinetobacter calcoaceticus Glucose-1-phosphate Thymidylyltransferase: Cloning, Sequencing, and Expression in E.coli

  • Eun, Suk-Ho;Kim, Dae-Jin;Kim, Yu-Sam
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.230-236
    • /
    • 2001
  • dTDP-rhamnose is synthesized from dTTP and glucose-1-phosphate by four enzymatic steps in the gram-negative bacteria. By using a homologous PCR product, a gene cluster encoding four genes (rfbA, rfbB, rfbC, rfbD) involved in L-rhamnose biosynthesis by Acinetobacter calcoaceticus was isolated and sequenced. The four genes were clustered on the biosynthetic operon in the order of rfbB, D, A, C. A gene, rfbA, encoding glucose-l-phosphate thymidylyltransferase (RfbA), was cloned from A. calcoaceticus pathogenic and encapsulated in the gram-negative bacterium. This enzyme catalyzes the formation of dTDP-D-glucose From $\alpha$-D-glucose-1-phosphate and dTTP.RfbA was amplified by PCR and inserted into the $T_7$ expression system. The activity of RfbA was determined by the capillary electrophoresis. The $K_m$ values for dTTP and $\alpha$-D-glucose-1-phosphate were calculated to be 1.27 mM and 0.80 mM, respectively by using the Line-Weaver Burk plot. RfbA is inactivated by diethylpyrocarbonate.

  • PDF

Method for Cloning Biosynthetic Genes of Secondary Metabolites Including Deoxysugar from Actinomycetes

  • Sohng, Jae-Kyung;Oh, Tae-Jin;Kim, Chun-Gyu
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.475-483
    • /
    • 1998
  • Many antibiotics contain partially deoxygenated sugar components that are usually essential for biological activity, affinity, structural stability, and solubility of antibiotics. Gene probes of the biosynthetic genes related with the deoxysugar were obtained from PCR. Primers were designed from the conserved peptide sequences of the known dTDP-D-glucose 4,6-dehydratases, which are the key step enzymes in the biosynthesis of deoxysugar. The primers were applied to amplify parts of dehydratase genes to 27 actinomycetes that produce the metabolites containing deoxysugar as structural constituents. About 180 and 340 bp DNA fragments from all of the actinomycetes were produced by PCR and analyzed by Southern blot and DNA sequencing. The PCR products were used as gene probes to clone the biosynthetic gene clusters for the antibiotic mithramycin, rubradirin, spectinomycin, and elaiophyrin. This method should allow for detecting of the biosynthetic gene clusters of a vast array of secondary metabolites isolated from actinomycetes because of the widespread existence of deoxysugar constituents in secondary metabolites.

  • PDF

Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces spectabilis ATCC 27741

  • Jo, You-Young;Kim, Sun-Hee;Yang, Young-Yell;Kang, Choong-Min;Sohng, Jae-Kyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.906-911
    • /
    • 2003
  • The function of genes related to spectinomycin biosynthesis (spcD, speA, speB, spcS2) from Streptomyces spectabilis ATCC 27741, a spectinomycin producer, was analyzed. Each gene was subcloned from a spectinomycin biosynthetic gene cluster and overexpressed in E. coli BL21 (DE3) using pET vector. After incubating each purified protein with its possible substrates, the final products were analyzed using high-performance liquid chromatography (HPLC). From these results, spcD, speA, and speB have been identified to be dTDP-glucose synthase, myo-inositol monophosphatase, and myo-inositol dehydrogenase, respectively. In addition, the results suggest that the spcS2 gene product functions downstream of the speB gene product in the biosynthetic pathway of spectinomycin. Taken together, the present study elucidates the early steps of the biosynthetic pathway for 6-deoxyhexose (6-DOH) part (actinospectose) and aminocyclitol part (actinamine) of spectinomycin.

Exploring the Nucleophilic N- and S-Glycosylation Capacity of Bacillus licheniformis YjiC Enzyme

  • Bashyal, Puspalata;Thapa, Samir Bahadur;Kim, Tae-Su;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1092-1096
    • /
    • 2020
  • YjiC, a glycosyltransferase from Bacillus licheniformis, is a well-known versatile enzyme for glycosylation of diverse substrates. Although a number of O-glycosylated products have been produced using YjiC, no report has been updated for nucleophilic N-, S-, and C- glycosylation. Here, we report the additional functional capacity of YjiC for nucleophilic N- and S- glycosylation using a broad substrate spectrum including UDP-α-D-glucose, UDP-N-acetyl glucosamine, UDP-N-acetylgalactosamine, UDP-α-D-glucuronic acid, TDP-α-L-rhamnose, TDP-α-D-viosamine, and GDP-α-L-fucose as donor and various amine and thiol groups containing natural products as acceptor substrates. The results revealed YjiC as a promiscuous enzyme for conjugating diverse sugars at amine and thiol functional groups of small molecules applicable for generating glycofunctionalized chemical diversity libraries. The glycosylated products were analyzed using HPLC and LC/MS and compared with previous reports.

Expression of orf8 (chlD) as Glucose-1-Phosphate Thymidylyltransferase Gene Involved in Olivose Biosynthesis from Streptomyces antibioticus Tü99 and Biochemical Properties of the Expressed Protein

  • Yoo, Jin-Cheol;Lee, Eun-Ha;Han, Ji-Man;Bang, Hee-Jae;Sohng, Jae-Kyung
    • BMB Reports
    • /
    • 제32권4호
    • /
    • pp.363-369
    • /
    • 1999
  • The orf8(chlD) gene cloned from Streptomyces antibioticus T$\"{u}$99 was overexpressed using an E. coli system to confirm its biological function. Induction of the E. coli strain transformed with recombinant plasmid pRFJ 1031 containing orf8 resulted in the production of a 43,000 dalton protein. Glucose-1-phosphate thymidylyltransferase activity of the cell extract obtained from the transformed strain was 4-5 times higher than that of the control strain. The expressed protein was purified 18-fold from E. coli cell lysate using three chromatographic steps with a 17% overall recovery to near homogeneity. The N-terminal amino acid sequence of the purified protein agrees with the nucleotide sequence predicted from the orf8 gene. The SDS-PAGE estimated subunit mass of 43,000 dalton agrees well with that calculated from the amino acid composition deduced from the nucleotide sequence of the orf8 gene (43,000 Da). Also, the native enzyme has a monomeric structure with a molecular mass of 43,000 dalton. The purified protein showed glucose-1-phosphate thymidylyltransferase activity catalyzing a reversible bimolecular group transfer reaction, and was highly specific for dTTP and ${\alpha}$-D-glucose 1-phosphate as substrates in the forward reaction, and for dTDP-D-glucose and pyrophosphate in the reverse reaction.

  • PDF