• Title/Summary/Keyword: dBrain

Search Result 1,008, Processing Time 0.024 seconds

Design of 3D Visualization Software Tool Based on VTK for Manual Brain Segmentation of MRI (뇌 MR영상 수동분할을 위한 VTK기반의 3차원 가시화 소프트웨어 툴 설계)

  • Yoon, Ho-Sung;Hewage, Nuwan;Moon, Chi Wong;Kim, Young-Hoon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Mild Cognitive Impairment(MCI) is a prior step to Alzheimer's Disease(AD). It is different from AD which is seriously affecting daily life. Particularly, the hippocampus could be charged a crucial function for forming memory. MCI has a high risk about progress to AD. Our investigated research for a relationship between hippocampus and AD has been studied. The measurement of hippocampus volumetric is one of the most commonly used method. The three dimensional reconstructed medical images could be passible to interpret and its examination in various aspects but the cost of brain research with the medical equipment is very high. In this study, 3D visualization was performed from a series of brain Magnetic Resonance Images(MRI) and we have designed and implemented a competitive software tool based on the open libraries of Visualization ToolKit(VTK). Consequently, our visualization software tool could be useful to various medical fields and specially prognosis and diagnosis for MCI patients.

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus

  • Park, Sunjung;Lee, Haeryung;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.426-431
    • /
    • 2015
  • Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.

Discovering the anti-cancer phytochemical rutin against breast cancer through the methodical platform based on traditional medicinal knowledge

  • Jungwhoi Lee;Jungsul Lee;WooGwang Sim;Jae-Hoon Kim;Chulhee Choi;Jongwook Jeon
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.594-599
    • /
    • 2023
  • A number of therapeutic drugs have been developed from functional chemicals found in plants. Knowledge of plants used for medicinal purposes has historically been transmitted by word of mouth or through literature. The aim of the present study is to provide a systemic platform for the development of lead compounds against breast cancer based on a traditional medical text. To verify our systematic approach, integrating processes consisted of text mining of traditional medical texts, 3-D virtual docking screening, and in vitro and in vivo experimental validations were demonstrated. Our text analysis system identified rutin as a specific phytochemical traditionally used for cancer treatment. 3-D virtual screening predicted that rutin could block EGFR signaling. Thus, we validated significant anti-cancer effects of rutin against breast cancer cells through blockade of EGFR signaling pathway in vitro. We also demonstrated in vivo anti-cancer effects of rutin using the breast cancer recurrence in vivo models. In summary, our innovative approach might be proper for discovering new phytochemical lead compounds designing for blockade of malignant neoplasm including breast cancer.

  • PDF

A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D Coordinates Derived from Brain Signal (로봇 팔의 뇌 신호로부터 유도된 3D 좌표 추적을 위한 Guidance Law 적용에 관한 연구)

  • Kim, Y.J.;Park, S.W.;Kim, W.S.;Yeom, H.G.;Seo, H.G.;Lee, Y.W.;Bang, M.S.;Chung, C.K.;Oh, B.M.;Kim, J.S.;Kim, Y.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.50-54
    • /
    • 2014
  • It is being tried to control robot arm using brain signal in the field of brain-machine interface (BMI). This study is focused on applying guidance laws for efficient robot arm control using 3D coordinates obtained from Magnetoencephalography (MEG) signal which represents movement of upper limb. The 3D coordinates obtained from brain signal is inappropriate to be used directly because of the spatial difference between human upper limb and robot arm's end-effector. The spatial difference makes the robot arm to be controlled from a third-person point of view with assist of visual feedback. To resolve this inconvenience, guidance laws which are frequently used for tactical ballistic missile are applied. It could be applied for the users to control robot arm from a first-person point of view which is expected to be more comfortable. The algorithm which enables robot arm to trace MEG signal is provided in this study. The algorithm is simulated and applied to 6-DOF robot arm for verification. The result was satisfactory and demonstrated a possibility in decreasing the training period and increasing the rate of success for certain tasks such as gripping object.

Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo

  • Lee, Jihye;Kim, Yoo Sun;Kim, Eunju;Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.438-452
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats. MATERIALS/METHODS: SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg. Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues. RESULTS: Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by down-regulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression. CONCLUSIONS: Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted.

Distribution of N-Methyl-D-Aspartate Receptor Subunits NR2A and NR2B in Chum salmon Brain (연어 뇌에서 N-Methyl-D-Aspartate 수용체 아단위 NR2A와 NR2B의 분포)

  • 진덕희;문일수
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.722-727
    • /
    • 1999
  • We carried out immunoblot analyses to study expression and subcellular distribution of the N-methyl-D-aspartate receptor(NR) subunits in salmon (Chum Salmon, Oncorhynchus keta). We prepared subcellular fractions such as brain homogenates, synaptosomes, and postsynaptic density (PSD) from salmon brains, and analyzed protein compositions by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). In a Coomassie-stained 6% SDS-gel, about 20 distinct major protein bands could be identified in the PSD fraction. Immunoblot analyses using antibodies against rat NR subunit 2A and 2B antigens (NR2A and NR2B, respectively) showed weak but evident signals at the 180 kDa positions in the salmon PSD fractions. However, in contrast to rat NRs, the salmon NR2A and NR2B are not recognized by a phosphotyrosine-specific antibody suggesting that the salmon NRs are regulated differently from those of the rat by protein tyrosine kinases. Our results indicate that NR2A and NR2B subunits are expressed in the salmon PSD fraction but not regulated by tyrosine phosphorylation.

  • PDF

Evidence of Memory Improvement by Phosphatidylcholine Supplement at Fetus and Neonate -Studies of Basal Forebrain Cholinerge Neuronal Activities- (태생기 및 신생기의 Phosphatidylcholine 보충기 기억력 향상에 미치는 영향 -전뇌기저부의 Choline성 신경세포 활성에 관한 연구-)

  • 전영희
    • Journal of Nutrition and Health
    • /
    • v.32 no.8
    • /
    • pp.864-869
    • /
    • 1999
  • To investigate the effect of dietary phosphatidylcholine(PPC) supplement on memory improvement, biochemical study on the brain, and morphometric studies on the cholinergic neurons in the rat basal forebrain were undertaken. The pregnancy rats were divided into the normal control, the choline deficient and the PPC supplemental groups according to quantity of the PPC in diet. According to choline deficiency and PPC supplement after birth, the neonate rate of the normal control group were subdivided into the control diet(N-N) and the PPC supplied (N-S) groups, the choline deficient group were subdivided into the continually deficient (D-D), the control diet(D-N) and the PPC supplied groups(D-S), and the PPC supplemental group were subdivided into the control diet (S-N)and the continually supplied (S-S)group. The PPC supplemented diet was added 2% egg PPC in AIN 76 formula diet. PPC concentrations and cholinesterase(CE) activities were measured in the serum, the liver and the brain, respectively. Immunohistochemical stains for choline acetyltransferase(ChAT) was employed for the morphological and morphometric studies. The maze test was undertaken to evaluate memory improvement. PPC concentration and CE activities in the serum, liver and the brain were high in the PPC supplemental groups and low in the choline deficient groups. ChAT immunoreactivity neurons at the medial septal diagonal bond complex and the basal forebrain nucleus of Meynert were reduced in the choline deficient groups. Average failure rate for the maze test was the lowest in the S-S group and the highest in the D-D group. Insufficient choline suppley during the neuronal development would result in cholinergic neuronal damage, which could be prevented by adequate PPC supplement. It is consequently suggested that PPC supplement may be effective on memory improvement by maintaining the cholinergic neuronal activity in the basal forebrain of the rats.

  • PDF

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

Protective Effects of Singihwan (腎氣丸) on Traumatic Brain Injury-induced Apoptosis in Rat Hippocampal Dentate Gyrus

  • Kwon, Oh-Bong;Song, Yun-kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.21-31
    • /
    • 2008
  • Backgrounds: Singihwan is used "to strengthen inborn energy" and we suspected a protective effect on brain neuron cells. Objectives: The aim of this study was to evaluate the effects of Singihwan (SGH) on traumatic brain injury-induced delayed apoptosis in rat hippocampal dentate gyrus. Methods: For a surgical induction of traumatic brain injury (TBI), a 5 mm diameter stainless rod was used to make traumatic attack from the surface of the brain used by an impactor. The protective effect of the aqueous extract of SGH against TBI in the rat hippocampal dentate gyrus was investigated by using step-down avoidance task, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, Bax immunohistochemistry, and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. Results: The aqueous extract of SGH suppressed the TBI-induced increase in apoptosis and cell proliferation in the hippocampal dentate gyrus. Conclusions: It is possible that the aqueous extract of SGH has a neuroprotective effect on TBI-induced neuronal cell death.

  • PDF

Betaine Attenuates Glutamate-induced Neurotoxicity in Primary Cultured Brain Cells

  • Park, Mi-Jung;Kim, So-Ra;Huh, Hoon;Jung, Jee-Hyung;Kim, Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.343-347
    • /
    • 1994
  • Effects of betaine on glutamate-induced neurotoxicity were examined on primary culturs of chicken embryonic brain cells and on rat cortical cultures. Betaine was found to attenuate glutamate-induced neurotoxicity both morphologically and biochemically. A 30 min exposure of chicken embryonic brain cells cultured for 12 days to 500 .mu.M glutamate produced wide-spread acute neuronal swelling and neurtic fragmentation. A 2-h pretreatment of cultured chicken embryonic brain cells with i mM betaine prior to a 30 min exposure to 500 , mu, M glutamate significantly raised the survival rate of neurons in the culture. When chicken embryonic brain cells were pretreated for 2 h with i mM betaine followed by exposure to 100 .mu.M glutamate for 42 h, lactate dehydrogenase levels within the cells remained at 62% of .mu.M untreated control values while glutamate-treated control fell to 0% lactate dehydrogenase. Betaine also exerted attenuating effects on N-methyl-D-asparte-, kainate-and quisqualate-induced neurotoxicity in a similar manner to that observed with glutamate. Similar neuroprotective effects of betaine with rat cortical cultures.

  • PDF