• 제목/요약/키워드: dBrain

검색결과 999건 처리시간 0.032초

Altered patterns of brain activity during transient anger among young males with alcohol use disorders: A preliminary study

  • Park, Mi-Sook;Sohn, Sunju;Seok, Ji-Woo;Kim, Eun-Hye;Sohn, Jin-Hun
    • 감성과학
    • /
    • 제18권2호
    • /
    • pp.55-64
    • /
    • 2015
  • The aim of the study was to investigate the neural substrates associated with processing anger among young males with alcohol use disorders (AUDs) using functional magnetic resonance imaging (fMRI). Eighteen individuals with AUD and 15 demographically similar non-abusers participated in the study. Participants were scanned on their brain functioning while they viewed an audio-visual film clip that was previously designed specifically to induce anger emotion, followed by anpsychological assessment. Greater brain activities were detected in the left inferior frontal gyrus (IFG) and dorsal anterior cingulate cortex (dACC) among subjects with AUD compared to the controls during the exposure to anger-provoking stimuli. Despite the same level of subjective anger during anger induction, the greater activations both in the IFG and dACC regions may suggestthat individuals with AUD have a greater propensity to undergo cognitive control and self-regulation while experiencing anger.

진통 펩타이드 K7DA의 혈액-뇌 관문을 통한 Vector-Mediated Delivery (Vector-Mediated Delivers of $^{125}I$-labeled Opioid Peptide, $[Lys^7$]dermorphin (K7DA), through the Blood-Brain Barrier)

  • 강영숙
    • Biomolecules & Therapeutics
    • /
    • 제5권1호
    • /
    • pp.53-58
    • /
    • 1997
  • $[Lys^7$]dermorphin, abbreviated K7DA, which has structural features similar to a metabolically stable $\mu$-opioid peptide agonist $[D-Arg^2, Lys^4$]dermorphin analogue (DALDA), but is intrinsically more potent with respect to binding to the $\mu$-opioid peptide receptor. The present studies report on attempts to enhance brain uptake of systemically administered K7DA by conjugation to a complex of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the blood-brain barrier (BBB). SA-OX26 conjugate mediates BBB transport of biotinylated therapeutics. The K7DA is monobiotinylated at the $\varepsilon$-amino group of the $[Lys^7$] residue with cleavable linker using NHS-SS-biotin. The brain uptake of $^{125}I$ labeled biotinylated K7DA ($^{125}I$-bio-SSa-K7DA) was very small and rapidly metabolized after intravenous injection. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the $^{125}I$-bio-55-K7DA bound to the SA-OX26 conjugate $^{125}I$-bio-SS-K7DA/SA-OX26) was 0.14$\pm$0.01, a level that is 2-fold greater than the brain uptake of morphine. The cleavability of the disulfide linker in vivo in rat plasma and brain was assessed with gel filtration HPLC and intravenous injection of labeled opioid chimeric peptides. The disulfide linker is stable in plasma in vivo but is cleaved in rat brain in vivo. In conclusion, these studies show that delivery of these potential opioid peptides to the brain may be improved by coupling them to vector-mediated BBB drug delivery system.

  • PDF

Regulation of Genetic Aggression by Central Dopamine System - Plurality of Dopamine Receptor -

  • Lee, Soon-Chul
    • Archives of Pharmacal Research
    • /
    • 제14권2호
    • /
    • pp.109-113
    • /
    • 1991
  • Two types of aggressive behavior were produced by selective breeding in ICR mimce. NC900 line mice exhibited high level of species-typical, isolation-induced aggression, conversely, NC100 line mice exhibited little aggression. The present study tested the hypothesis that these differences involved brain monoamine systems. Comparisons of microdissected samples from various brain regions showed that NC100 line mice had significantly lower concentrations of dopamine. DOPAC and HVA in the nucleus accumbens (NAB) and caudate nucleus (NCU) than NC900 line. Homogenate binding studies demonstrated that NC100 mice had significantly increased density of $D_1$ dopamine receptor, but not $D_2$ dopamine receptor in the caudate nucleus. These results support the hypothesis that central dopamine pathways play an important role in modulating the genetically selected differences in aggressive behavior, and of which intensity differs from TEX>$D_1$\;and\;$D_2$ dopamine receptors.

  • PDF

한국인의 ACE(Angiotensin-converting Enzyme) 유전자의 다형성과 뇌혈관 질환과의 관계에 대한 연구 (Angiotensin-converting Enzyme Gene Polymorphism and Cerebrovascular Disease in Korean population)

  • 이진우;이경진;노삼웅;김재중;배형섭;홍무창;신민규;김영석;배현수
    • 동의생리병리학회지
    • /
    • 제16권4호
    • /
    • pp.724-728
    • /
    • 2002
  • Angiotensin-converting enzyme (ACE) gene polymorphism, which consists of presence (insertion, I) or absence (deletion, D) of a 250-bp fragment, is associated with ischemic heart disease, renovascular disease, systemic lupus erythematosus. Subjects with the DD genotype have higher levels of circulating ACE than subjects with the II genotype and show an increased tendency towards vascular wall thickness and contribute to the development of vascular disease. But the association between I/D polymorphism of the ACE gene and cerebrovascular disease is still controversial. The aim of this study was to determine whether the DNA polymorphism of the ACE are associated with cerebrovascular disease in Korean population. The study group comprised 377 Korean patients admitted to Kyunghee Oriental Medical Center in the year of 2000 for the treatment of brain infarction or brain hemorrhage. Magnetic resonance imaging(MRI) was performed for each patient to determine the stroke phenotype, infarction or hemorrhage. The 183 subjects without evidence of brain infarction or brain hemorrhage were selected from the some ethnical population(control group). Venous blood samples were drawn from each subject for the extraction of DNA. Genotypes of ACE were determined by polymerase chain reaction amplification of the genomic DNA. Case and control genotype frequencies were compared by chi-square testing. Both the patients and the controls were classified respectively into 4 groups: age less than forty years, age forty one to fifty, age fifty one to sixty, age greater than sixty years. There were no significant differences in the distributions of ACE genotypes among the patients with infarction, with hemorrhage and controls (Infarction: D/D 15.8%, I/D 46.7%, I/I 37.5%, Hemorrhage: D/D 15.1%, I/D 46.5%, I/I 38.4%, Control: D/D 18.6%, I/D 50.3%, I/I 31.2%). There was a significant difference in the distribution of ACE genotypes between the age greater than sixty year subgroup of patient with brain hemorrhage and the control (Hemorrhage: D/D 0%, I/D 55.6%, I/I 44.4%, Control: D/D 13.0%, I/D 63.0%, I/I 23.9%; Pearson Chi-Square value 5.956, P<0.05). Furthermore, the frequency of the ACE D/D type declined with increasing age both in the patient and control group (Patient group: age < 50 D/D 21.5%, age > 50 D/D 14.42%; Control group: age < 50 D/D 21.0%, age > 50 D/D 14.2%). In conclusion there is no clear association between ACE polymorphism and cerebrovascular disease in Korean population. Although, there was a tendency for the frequency of the ACE D/D type declined with increasing age in both patients and controls.

Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae;Jung, Youn Sik;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.298-304
    • /
    • 2016
  • Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

대학원생들의 연구관련 성과 변인들의 차이 분석: 글로벌 박사양성 프로젝트와 두뇌한국21사업을 중심으로 (An Analysis of the Differences in Research-related Constructs: Serial Comparson of the Graduate Students in Global Ph. D Fellowship and Brain Korea 21 Projects)

  • 장덕호
    • 공학교육연구
    • /
    • 제16권3호
    • /
    • pp.20-27
    • /
    • 2013
  • The purpose of this study is to compare the key research-related constructs, research insterest, research self-efficacy, research productivity, and research outcome expectation of the graduate students, who are participating in Global Ph.D Fellowship (GPF) and Brain Korea (BK) 21 projects. The overall results show that the mean scores of GPF students in research interest, research self-efficacy, research productivity, and research outcome expectation are higher than those of BK21. However, the higher mean scores of doctoral students in both GPF and BK21 projects imply that the longer you stay in graduate program, the better researcher you can be. Although GPF program selected higher potential students and they seem to work very hard with high expectation to be competent researchers, compatible outcome also could be possible by BK21 project.

The Expressional Changes of Nitric Oxide Synthase in the Rat Brain Following Food Restriction

  • Kang Kyounglan;Huh Youngbuhm;Park Chan;Choue Ryo Won
    • Nutritional Sciences
    • /
    • 제8권4호
    • /
    • pp.231-236
    • /
    • 2005
  • This study investigated the changes in the neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activities during food restriction in the rat brain such as cerebral cortex, cerebellum, caudate pautamen and hypothalamus. The rats were placed on a restricted feeding schedule consisting of half the ad libitum quantity for 3 days and 1, 2, 4, 6 and 9 weeks, and a free feeding schedule for 4 weeks. The loss of body weight peaked after 1 week of food restriction and persisted during the entire 9-week period of food restriction. The dramatic weight change in the first week ($12\%$) and the reduction in weight changes thereafter suggest that major adaptation changes occur early and body maintenance occurs subsequently. In the hypothalamus, the optical densities of the NADPH-d and nNOS immunoreactivities were found to be significantly higher in the 1-week and lower in the 9-week food restricted group than in the ad libitum fed control rats. In contrast, in the cerebral cortex, the optical densities of the NADPH-d- and nNOS-positive neurons were not changed significantly during the period of food restriction. This study provides the morphological evidence showing that food restriction has a significant effect on the nitric oxide synthesizing system of the hypothalamus.

영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출 (Contour detection of hippocampus using Dynamic Contour Model and Region Growing)

  • 장동표;김효대;이두수;김선일
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF

뇌 MR영상 수동분할을 위한 VTK기반의 3차원 가시화 소프트웨어 툴 설계 (Design of 3D Visualization Software Tool Based on VTK for Manual Brain Segmentation of MRI)

  • 윤호성;;문치웅;김영훈;최흥국
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.120-127
    • /
    • 2015
  • Mild Cognitive Impairment(MCI) is a prior step to Alzheimer's Disease(AD). It is different from AD which is seriously affecting daily life. Particularly, the hippocampus could be charged a crucial function for forming memory. MCI has a high risk about progress to AD. Our investigated research for a relationship between hippocampus and AD has been studied. The measurement of hippocampus volumetric is one of the most commonly used method. The three dimensional reconstructed medical images could be passible to interpret and its examination in various aspects but the cost of brain research with the medical equipment is very high. In this study, 3D visualization was performed from a series of brain Magnetic Resonance Images(MRI) and we have designed and implemented a competitive software tool based on the open libraries of Visualization ToolKit(VTK). Consequently, our visualization software tool could be useful to various medical fields and specially prognosis and diagnosis for MCI patients.

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus

  • Park, Sunjung;Lee, Haeryung;Park, Soochul
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.426-431
    • /
    • 2015
  • Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.