• 제목/요약/키워드: dBrain

검색결과 992건 처리시간 0.021초

두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정 (Effective Dose Determination From CT Head & Neck Region)

  • 윤재혁;이광원;조영기;최지원;이준일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제34권2호
    • /
    • pp.105-116
    • /
    • 2011
  • 두경부(Head & Neck) CT(Computed Tomography)검사에서 환자가 받는 피폭선량 측정을 위하여 인체등가물질로 만든 Rando phantom과 유리선량계를 이용하여 두경부 검사에 따른 환자의 흡수선량의 변화를 실험을 통하여 연구하였다. 인체두부모형을 안와신경(optic nerve), 교뇌(pons), 소뇌(cerebellum), 갑상선(thyroid)으로 나누어, 두경부(Head & Neck) 부위의 검사를 단독검사(Brain, 3D Facial, Temporal, Brain Angiography, 3D Cervical Spine)와 복합검사(Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spin+Angiography)로 구분하여 유효선량의 변화를 실험한 후 결과를 측정하였다. 단순 Brain검사와 Brain Angio검사에는 optic nerve에 유효 선량이 높게 분석되었으며, 또한 Temporal검사에는 Pons에, 3D facial 검사와 3D Cervical Spin검사에는 thyroid의 유효선량 값이 높게 나타났다. 복합적으로 이루어는 검사 중 두경부의 Brain+Brain Angio의 검사는 cerebellum의 부위, Brain+3D facial 검사와 Brain+3D Cervical Spin의 복합검사는 thyroid의 부위, Brain+Temporal의 검사에는 pon's 부위 유효 선량 값이 높게 나타났다. Brain +3D facial +Temporal의 복합검사와 Brain+3D Cervical Spin+Angio의 복합검사는 thyroid의 부위에 유효 선량 값이 높게 분석 되었다. 본 연구 결과 Brain+3D Cervical Spin+Brain Angio 복합검사인 경우의 유효 선량은 2.51858 mSv로 일반인의 연간 유효선량한도 1 mSv의 피폭을 초과하는 결과가 나왔다. 또한, Brain 단순 검사 시 optic nerve는 0.31312 mSv의 유효선량으로 향후 방사선학 검사가 이루어질 경우, 두경부의 일반인의 연간 유효선량을 훨씬 초과할 것이라 사료된다. 따라서 진료의 필요성에 의해서 시행되는 CT검사일지라도 질환 병변의 특성에 맞게 CT촬영조건 변화를 주면서 환자의 피폭선량을 최소한으로 할 수 있는 다양한 검사방법의 연구가 필요하다고 사료된다.

사람 뇌의 3차원 영상과 가상해부 풀그림 만들기 (Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain)

  • 정민석;이제만;박승규;김민구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성 (Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer)

  • 이용기;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

마우스에서 뇌관류법과 정맥투여법에 의하여 흰쥐 트란스페린 단일항체의 체내동태 및 혈액-뇌 관문 투과성의 검토 (The Determination of Blood-Brain Barrier Permeability and Pharmacokinetics of a Rat Transferrin Receptor Monoclonal Antibody by Brain Perfusion Method and Intravenous Injection Technique in Mice)

  • 강영숙
    • Biomolecules & Therapeutics
    • /
    • 제10권1호
    • /
    • pp.37-42
    • /
    • 2002
  • Brain drug targeting through the blood-brain barrier (BBB) in vivo is possible with peptidornirnetic monoclonal antibodies that undergo receptor-mediated transcytosis through the BBB. Monoclonal antibody to the rat transferrin receptor, such as the OX26 was studied in rats as a transport vector through BBB on the transferrin receptor. But, OX26 is not an effective brain delivery vector in mouse. In the present studies, rat monoclonal antibody, 8D3 to the mouse transferrin receptor were evaluated for brain drug targeting vector intransgenic mouse model. Pharrnacokinetic parameters in plasma and organ uptakes were determined at varioustimes after i.v. bolus injection of [$^{}125}I$] 8D3 in Balb/c mice. Brain uptake of [$^{}125}I$] 8D3 was also studied with an internal carotid artery perfusioncapillary depletion method. After i.v. injection of [$^{}125}I$] 8D3, plasma concentrations declined biexponentially with elimination half lift of approximately 2.2 hours. Brain uptake of [$^{}125}I$] 8D3 was $0.50{\pm}0.09$ persent of injected dose per g brain after 2 hours i.v. injection. After perfusion 5 min the apparent volume of distibution of [$^{}125}I$] 8D3 in brain was $22.3 {\mu}l/g,$ which was 4.8 fold higher than the intravascular volume. These studies indicate rat monoclonal antibody to the mouse transferrin receptor, 8D3 may be used for brain drug targeting vector in mice.

체내 철 수준이 뇌로의 구리 이동과 분포에 미치는 영향 (The Effect of Systemic Iron Level on the Transport and Distribution of Copper to the Brain)

  • 최재혁;박정덕;최병선
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.279-287
    • /
    • 2007
  • Copper (Cu) is an essential trace element indispensable for brain development and function; either excess or deficiency in Cu can cause brain malfunction. While it is known that Cu and Fe homeostasis are strictly regulated in the brain, the question as to how systemic Fe status may influence brain Cu distribution was poorly understood. This study was designed to test the hypothesis that dietary Fe condition affects Cu transport into the brain, leading to an altered brain distribution of Cu. Rats were divided into 3 groups; an Fe-deficient (Fe-D) group which received an Fe-D diet ($3{\sim}5 mg$ Fe/kg), a control group that was fed with normal diet (35mg Fe/kg), and an Fe-overload group whose diet contained an Fe-O diet (20g carbonyl Fe/kg). Following a 4-week treatment, the concentration of Cu/Fe in serum, CSF (cerebrospinal fluid) and brain were determined by AAS, and the uptake rates of Cu into choroids plexus (CP), CSF, brain capillary and parenchyma were determined by an in situ brain perfusion, followed by capillary depletion. In Fe-D and Fe-O, serum Fe level decreased by 91% (p<0.01) and increased by 131% (p<0.01), respectively, in comparison to controls. Fe concentrations in all brain regions tested (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were lower than those of controls in Fe-D rats (p<0.05), but not changed in Fe-O rats. In Fe-D animals, serum and CSF Cu were not affected, while brain Cu levels in all tested regions (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were significantly increased (p<0.05). Likewise, the unidirectional transport rate constants $(K_{in})$ of Cu in CP, CSF, brain capillary and parenchyma were significantly increased (p<0.05) in the Fe-D rats. In contrast, with Fe-O, serum, CSF and brain Cu concentrations were significantly decreased as compared to controls (p<0.05). Cu transport was no significant change of Cu transport of serum in Fe-O rats. The mRNA levels of five Cu-related transporters were not affected by Fe status except DMT1 in the CP, which was increased in Fe-D and decreased in Fe-O. Our data suggest that Cu transport into brain and ensuing brain Cu levels are regulated by systemic Fe status. Fe deficiency appears to augment Cu transport by brain barriers, leading to an accumulation of Cu in brain parenchyma.

VRML을 이용한 3차원 Brain-endoscopy와 2차원 단면 영상 (3D Brain-Endoscopy Using VRML and 2D CT images)

  • 김동욱;안진영;이동혁;김남국;김종효;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.285-286
    • /
    • 1998
  • Virtual Brain-endoscopy is an effective method to detect lesion in brain. Brain is the most part of the human and is not easy part to operate so that reconstructing in 3D may be very helpful to doctors. In this paper, it is suggested that to increase the reliability, method of matching 3D object with the 2D CT slice. 3D Brain-endoscopy is reconstructed with 35 slices of 2D CT images. There is a plate in 3D brain-endoscopy so as to drag upward or downward to match the relevant 2D CT image. Relevant CT image guides the user to recognize the exact part he or she is investigating. VRML Script is used to make the change in images and PlaneSensor node is used to transmit the y coordinate value with the CT image. The result is test on the PC which has the following spec. 400MHz Clock-speed, 512MB ram, and FireGL 3000 3D accelerator is set up. The VRML file size is 3.83MB. There was no delay in controlling the 3D world and no collision in changing the CT images. This brain-endoscopy can be also put to practical use on medical education through internet.

  • PDF

Realistic Head Phantom for Evaluation of Brain Stroke Localization Methods Using 3D Printer

  • Lee, Juneseok;Bang, Jihoon;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • 제16권4호
    • /
    • pp.254-258
    • /
    • 2016
  • In this paper, a brain phantom for evaluating brain stroke localization is proposed. To evaluate brain stroke localization, a phantom imitating three-dimensional (3D) simulation environment is needed. Mold for the proposed phantom was printed by a 3D printer and the interior of the phantom consists of 5 different brain tissue materials. Each of the brain tissue materials has the conductivity and permittivity similar to those of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) standards for a frequency band from 0.5 to 2 GHz.

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발 (Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors)

  • 표홍렬;이상훈;김귀언;금기창;장세경;서창옥
    • Radiation Oncology Journal
    • /
    • 제20권1호
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Optimization of block-matching and 3D filtering (BM3D) algorithm in brain SPECT imaging using fan beam collimator: Phantom study

  • Do, Yongho;Cho, Youngkwon;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3403-3414
    • /
    • 2022
  • The purpose of this study is to model and optimize the block-matching and 3D filtering (BM3D) algorithm and to evaluate its applicability in brain single-photon emission computed tomography (SPECT) images using a fan beam collimator. For quantitative evaluation of the noise level, the coefficient of variation (COV) and contrast-to-noise ratio (CNR) were used, and finally, a no-reference-based evaluation parameter was used for optimization of the BM3D algorithm in the brain SPECT images. As a result, optimized results were derived when the sigma values of the BM3D algorithm were 0.15, 0.2, and 0.25 in brain SPECT images acquired for 5, 10, and 15 s, respectively. In addition, when the sigma value of the optimized BM3D algorithm was applied, superior results were obtained compared with conventional filtering methods. In particular, we confirmed that the COV and CNR of the images obtained using the BM3D algorithm were improved by 2.40 and 2.33 times, respectively, compared with the original image. In conclusion, the usefulness of the optimized BM3D algorithm in brain SPECT images using a fan beam collimator has been proven, and based on the results, it is expected that its application in various nuclear medicine examinations will be possible.