• Title/Summary/Keyword: dBc

Search Result 848, Processing Time 0.025 seconds

A Design of Predistortion Linearizer using 2nd Low Frequency Intermodulation Signal Injection (2차 저주파 혼변조 신호 주입을 이용한 전치 왜곡 선형 화기 설계)

  • Lee, Hyo-A;Lee, Chul-Whan;Jeong, Yong-Chae;Kim, Young;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.967-973
    • /
    • 2003
  • This paper presents a new predistortion method which injects the 2nd low-frequency intermodulation signal of RF signals into the input bias line of the amplifier. New 2nd intermodulation signal extraction circuit is also proposed. We have shown that this method can suppress the 3rd IM apparently and sometimes do the 5th IM, through mathematical analysis, then confirmed it with simulation and verified it on the desk test. When the input signal CDMA IS-95 lFA is applied, measured ACPR improvements are 25 dBc, 22.5 dBc, and 6 dBc at 0.885 MHz, l.25 MHz and 2.25 MHz offset respectively. Also, when applying the CDMA IS-95 3FA, the measured ACPR improvement is 20 dBc at 0.885 MHz offset.

An X-band Oscillator Using a New Hairpin Resonator (새로운 헤어핀 공진기를 이용한 X 밴드 발진기)

  • Seo, Sung-Won;Jeong, Jin-Ho;Park, Chan-Hyeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.250-256
    • /
    • 2008
  • In this paper, an X-band oscillator is presented using a new miniaturized microstrip hairpin resonator. The newly designed hairpin resonator on the microstrip line employs the spiral structure, which shows a higher loaded quality factor and the 50 % reduced circuit area compared to the conventional one at 9.2 GHz. The oscillator using proposed resonator shows the output power of 10.87 dBm, the second harmonic suppression of 41.99 dBc, and the phase noise performance of -101.49 dBc/Hz at 100 kHz offset, which is better than the conventional resonator oscillator by 6.17 dB.

Low Phase Noise Push-Push VCO Using Microstrip Square Open Loop Resonator and Tunable Negative Resistance (마이크로스트립 사각 개방 루프 공진기와 가변 부성 저항을 이용한 저위상 잡음 Push-Push 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.847-853
    • /
    • 2007
  • In this paper, a novel push-push voltage-controlled oscillator(VCO) using microstrip square open loop resonator and tunable negative resistance is presented. The microstrip square open loop resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of VCO. The VCO with 1.8V power supply has phase noise of $-124.67{\sim}-122.67dBc/Hz\;@\;100 kHz$ in the tuning range, $5.744{\sim}5.859 GHz$. The FOM of this VCO is $-202.83{\sim}-201dBc/Hz\;@\;100 kHz$ in the same tuning range. When it has been compared with single-ended VCO using microstrip square open loop resonator, and push-push oscillator using microstrip line resonator, the reduced phase noise has been -8.51dB, and -33.67dB, respectively.

Design and Implementation of Wideband Ultra-Fast High Precision Frequency Synthesizer for ELINT Equipment (ELINT 장비용 광대역 초고속 고정밀 주파수 합성기 설계 및 구현)

  • Lee, Kyu-Song;Jeon, Kye-Ik;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1178-1185
    • /
    • 2009
  • In this paper, a wideband ultra-high speed & high purity discrete frequency synthesizer having minimum 2.5 MHz step size was proposed. To achieve fast and wideband operation, discrete frequencies were synthesized by mixing of 3 different pre-synthesized 16 frequencies made from fixed PLL and frequency dividers. Frequencies with discrete 2.5 MHz step were produced in 710~1,610 MHz. The measured hopping response time was 350 nsec average, output level was 21.5 dBm average with 2.65 dB flatness, spurious and harmonics level were suppressed below -60 dBc, and phase noise was -94 dBc/Hz@100 Hz. Also, a new measurement method for synthesizer response time was described.

Implementation of Voltage Controlled Oscillator Using Planar Structure Split Ring Resonator (SRR) (평면형 구조의 분리형 링 공진기를 이용한 전압제어 발진기 구현)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1538-1543
    • /
    • 2013
  • In this paper, a novel split ring resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator. Oscillator using proposed split ring resonator is designed, it has improved phase noise characteristics. At the fundamental frequency of 5.8GHz, 7.22dBm output power and -83.5 dBc@100kHz phase noise have been measured for oscillator with split ring resonator. The phase noise characteristics of oscillator is improved about 9.7dB compared to one using the general ${\lambda}/4$ microstrip resonator. Next, we designed voltage controlled oscillator using proposed split ring resonator with varactor diode. The VCO has 125MHz tuning range from 5.833GHz to 5.845GHz, and phase noise characteristic is -118~-115.5 dBc/Hz@100KHz. Due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

A 2.4 GHz Band VCO Design by Using CMRC Filter (CMRC 여파기를 이용한 2.4 GHz 대역의 VCO 설계)

  • Jung, Seung-Back;Lee, Chong-Min;Yang, Seung-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1083-1089
    • /
    • 2007
  • In this paper, we applied the CMRC to a resonator to improve the harmonic characteristic of VCO. The CMRC filters have some advantage. It is a small size as well as easy to manufacture than PBG, DGS and other filters. This paper was proposed by using CMRC for a VCO. The second harmonic of -42.83 dBc and the phase noise at 100 kHz offset of -95.83 dBc/Hz was achieved, respectively. The VCO has better second harmonic character by 15.73 dB and phase noise by 31.13 dB in case of CMRC applied behind a resonator than CMRC used as a resonator.

Design of 77 GHz Radar Transmitter Using 13 GHz CMOS Frequency Synthesizer and Multiplier (13 GHz CMOS 주파수 합성기와 체배기를 이용한 77 GHz 레이더 송신기 설계)

  • Song, Ui-Jong;Kang, Hyun-Sang;Choi, Kyu-Jin;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1297-1306
    • /
    • 2012
  • This work presents a 77 GHz radar transmitter for the automotive radar system. An integrated 13 GHz frequency synthesizer fabricated using 130 nm RF CMOS process drives a commercial W-band compound semiconductor monolithic multifunction amplifier(MPA), which includes a frequency multiplier by six to generate 77 GHz transmitting signal. The 13 GHz frequency synthesizer includes a high efficiency injection buffer of 4 dBm output power to drive the MPA. The output power of 77 GHz radar transmitter is higher than 13.99 dBm and the magnitude of the reference spur relative to the carrier is -36.45 dBc. The phase noise is -81 dBc/Hz at 1 MHz offset frequency from the carrier.

BUC Design and Fabrication for Flyaway Satellite Terminal (운반형 위성단말 고출력 상향 주파수변환기 설계 및 제작)

  • Kim, Joo-Yeon;Shin, Kwan-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.72-80
    • /
    • 2020
  • This paper describes the design and fabrication of a BUC(Block Up-converter) which is a component of a FST (Flyaway Satellite Terminal), one of the ET(Earth Terminal) of the military satellite. BUC is physically composed of an up-converter module, a high power amplifier module, a receive band suppression filter, a housing, and a cable assembly. It was designed using simulator AWR to satisfy the electrical characteristics of BUC's such as maximum output power, gain, unwanted signal, and intermodulation. The maximum output power and gain characteristics were measured at 43.4dBm and 51.8dB, respectively. The unwanted wave and intermodulation characteristics were -73.5dBc and -31.9dBc, respectively. Of the electrical requirements of Table 1, not only the above four but also all of the items were confirmed to be satisfied.

Analysis of Microwave Image signal Rejection using the Dual Gate FETs (Dual Gate FETs에 의한 마이크로파 이미지신호 제거특성 분석)

  • 심재우;이경보;이강훈;이영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.234-237
    • /
    • 2001
  • 본 논문은 마이크로파 수신기시스템에서 발생되는 이미지성분을 효과적으로 제거하기 위해서 Dual Gate FETs을 이용한 이미지 제거 특성을 분석하였다. Dual Gate를 이용한 이미지 제거능력을 모의 실험한 결과 RF신호에 대한 이미지 제거특성은 -32dBc을 보였으며, Dual Gate FETs믹서의 변환이득은 1.7 dBm, 5GHz 발진주파수는 -117.3 dBc/100KHz 임을 확인하였다.

  • PDF