• Title/Summary/Keyword: d-spacing

Search Result 684, Processing Time 0.043 seconds

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

Analysis of Hydraulic Fracture Geometry by Considering Stress Shadow Effect during Multi-stage Hydraulic Fracturing in Shale Formation (셰일저류층의 다단계 수압파쇄에서 응력그림자 효과를 고려한 균열형태 분석)

  • Yoo, Jeong-min;Park, Hyemin;Wang, Jihoon;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.20-29
    • /
    • 2021
  • During multi-stage fracturing in a low permeable shale formation, stress interference occurs between the stages which is called the "stress shadow effect(SSE)". The effect may alter the fracture propagation direction and induce ununiform geometry. In this study, the stress shadow effect on the hydraulic fracture geometry and the well productivity were investigated by the commercial full-3D fracture model, GOHFER. In a homogeneous reservoir model, a multi-stage fracturing process was performed with or without the SSE. In addition, the fracturing was performed on two shale reservoirs with different geomechanical properties(Young's modulus and Poisson's ratio) to analyze the stress shadow effect. In the simulation results, the stress change caused by the fracture created in the previous stage switched the maximum/minimum horizontal stress and the lower productivity L-direction fracture was more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than the relatively ductile Eagle Ford shale, the fracture width in the former was developed thicker, resulting in the larger fracture volume. And the Marcellus shale's Young's modulus is low, the stress effect is less significant than the Eagle Ford shale in the stage 2. The stress shadow effect strongly depends on not only the spacing between fractures but also the geomechanical properties. Therefore, the stress shadow effect needs to be taken into account for more accurate analysis of the fracture geometry and for more reliable prediction of the well productivity.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

A Study on the Separation Minima for Urban Air Mobility in Low-Density Operation Environments (저밀도 운용 환경에서의 도심항공교통 분리 기준에 관한 연구)

  • Hyoseok Chang;Dohyun Kim;Jaewoo Kim;Daniel Kim;Heeduk Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.710-715
    • /
    • 2023
  • Urbanization brings many challenges such as traffic, housing, and environment. To solve these problems, researchers are working on new transportation systems like urban air mobility (UAM). UAM aircraft should fly safely without burdening the existing air traffic system in the early stage of low-density operation. The airspace should also be managed and operated efficiently. Therefore it is important to make urban air traffic predictable by using corridors and collecting data on low-density operations in the early stage. For this purpose various simulations are needed before operation to create scenarios that estimate potential collisions between UAM aircraft and to evaluate the risks of aircraft spacing, loss of separation (LoS), and near mid air collision (NMAC). This paper focuses on identifying the requirements and considerations for setting separation standards for urban air traffic based on the results of studies.

A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel (말뚝의 횡방향 이격거리를 고려한 터널굴착이 인접 단독말뚝 및 군말뚝에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.637-652
    • /
    • 2015
  • In the present work, a number of three-dimensional (3D) parametric numerical analyses have been carried out to study the influence of tunnelling on the behaviour of adjacent piles considering the transverse distance of the pile tip from the tunnel. Single piles and $5{\times}5$ piles inside a group with a spacing of 2.5d were considered, where d is the pile diameter. In the numerical modelling, several key issues, such as the tunnelling-induced pile settlements, the interface shear stresses, the relative shear displacements, the axial pile forces, the apparent factors of safety and zone of influence have been rigorously analysed. It has been found that when the piles are inside the influence zone, the pile head settlements are increased up to about 111% compared to those computed from the Greenfield condition. Larger pile settlements and smaller axial pile forces are induced on the piles inside the pile groups than those computed from the single piles since the piles responded as a block with the surrounding ground. Also tensile pile forces are induced associated with the upward resisting skin friction at the upper part of pile and the downward acting skin friction at the lower part of pile. On the contrary, when the piles were outside the influence zone, tunnelling-induced compressive pile forces developed. Based on computed load and displacement relation of the pile, the apparent factor of safety of the piles was reduced up to about 45%. Therefore the serviceability of the piles may be substantially reduced. The pile behaviour, when considering the single piles and the pile groups with regards to the influence zone, has been analysed by considering the key features in great details.

Productivity and Density Control of Stands of Japanese Larch (일본잎갈나무 임분(林分)의 생산력(生產力)과 밀도관리(密度管理)에 관(關)한 연구(硏究))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.34 no.1
    • /
    • pp.21-30
    • /
    • 1977
  • Japanese larch (Larix leptolepis) is one of main timber species in Korea that could find much plantation and growing stands on all over the country. It is thought to be in meaningful that a guiding diagram for density control of Japanese larch stands is made to estimate easily the density conditions in the quantitaive, ecological and economic viewpoint. Sample plots for this study are selected from the stands that have not been thinned in recent years, and mean height, mean diameter, dominant height, tree numbers per hectare and stem volume of mean tree are calculated from the each sample plots among total 165 plots In this study, especially, the theory of slenderness of mean tree are applied, that have been identified through the results of the spacing trial. Relative growth characteristics of this species are calculated from the general logistic curve and its formula is $Y=ax^b$. Relatwion between the measured items are found out as follows: 1. Relation between the mean height and tree numbers per hectare by slender class is showing the high correlation as table 1 and fig. 2, and between mean diameter and tree numbers per hectare is also high correlation as table 1 and fig 3. 2. The stem volume can be correctly estimated from height in case that slender class may be known, as showing in table 3 and fig. 4. 3. The stem volume can be more correctly estimated from the relation with $D^2H$ as formula, $Log_e\;V=0.9569\;Log_eD^2H-9.8431$, and relation between stem volume of single tree or volume per hectare and tree numbers per hectare are as following formulas: $Log_e$ stem volume=9.5026-1.6800 $Log_e$ tree numbers per hectare $Log_e$ stem volume per hectare=9.4911-0.6784 $Log_e$ tree numbers per hectare. Stem volume of mean tree, tree numbers per hectare and stem volume per hectare correspond to the mean tree height are calculated to slender class as table 5, 6, 7. Through the above steps, the diagram for density control of Japanese larch are produced as fig. 9. It is thought that this diagram could be applied to control the density of Japanese larch stands.

  • PDF

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

Actual Evapotranspiration of Sesame Crop Cultured With and Without Transparent Plastic Film Mulch (투명(透明) 프라스틱 필름 피복(被覆)에 따른 참깨의 실증발산량(實蒸發散量) 변화(變化))

  • Oh, Dong-Shin;Kwon, Yong-Woong;Im, Jung-Nam;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • Determining the actual evapotranspiration(ETa) of a crop, and appropriate water management of the crop based on the ETa are very important For increasing the yield. The present study aimed at determining ETa and crop coefficient of sesame growing under different climatic conditions with the transparent thin polyethylene film mulch(0.03 mm thick) and without this mulch. Bottomless cylindrical lysimeters(105cm in diameter, 120cm in height, protruded 20 cm above the soil surface) were installed on the field of sandy loam "Bonyang series" soil with a moderate drainage. The determination of ETa was performed by measuring each component of a model equation, $ETa=(R+I)-\{Ro+(D1+D2)\}+C{\pm}{\Delta}S$. Sesame, cv. "Ansan" was sown in two rows with the spacing of $50{\times}15cm$ on May 10 in 1991 and 1992. The mulching covers 80% of the soil surface. Sesame consumed the water of 139.0 mm(1.53 mm/day) and 171.2 mm(1.59 mm/day) in ETa without the film mulch, but that of 132.6 mm(1.46 mm/day) and 199.8 mm(1.85 mm/day) with its mulching through both years of 1991 and 1992, respectively. The ETa's accounted for 52 and 69% of the potential evapotranspiration(ETp) in the mulched crop, and 54 and 59% of ETp in the non-mulched crop 1991 through 1992, respectively. Its ETa's were much more and their gap between the mulching and non-mulching treatment was larger in 1992 than in 1991 as a result of the better climatic condition of 1992.

  • PDF

Makeup Cleansing Formulation with Lamellar Liquid Crystal Phase (라멜라 액정상 메이크업 클렌징 제형)

  • Yeo, Hye Lim;Lee, Ji Hyun;Kim, Su Ji;Noh, Minjoo;Jang, Ji Hui;Kim, Youn Joon;Yoon, Moung Seok;Yoo, Kweon Jong;Lee, Jun Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • This study is related to a lamellar liquid crystal make-up cleansing formulation with a hologram-like unique appearance between two polarizing plates. Make-up cleansing formulations with a lamellar liquid crystal phase have been extensively studied for a long time, but there have been limitations in practical commercialization because of increasing turbidity and viscosity. In this study, to solve this problem, alkyl chains of surfactants were modified to increase the fluidity of the liquid crystal phase, and electrostatic repulsion force was increased by introducing anionic surfactant. The lamellar liquid crystal make-up cleansing formulation which introduced anionic surfactants can easily inhibit crystallization through electrostatic repulsion force, thereby showing excellent stability overtime, maintaining transparent appearance and viscosity. In addition, we have newly introduced an in vitro cleansing evaluation method using fluorescent material and in vivo imaging system (IVIS) for objective and quantitative cleansing ability evaluation. The excellent cleansing ability of lamellar liquid crystal cleansing formulation has been confirmed by newly developed evaluation method. On the other hand, when lamellar liquid crystal make-up cleansing formulation was placed between orthogonally arranged two polarizing plates, a specific pattern like a hologram can be observed. This phenomenon is presumably interpreted as the interference between the visible light passing through the liquid crystal formulation and the lamellar structure. The lamellar structure of cleansing formulation was confirmed by SAXS analysis, exhibiting Bragg spacing ratio of 1 : 2. The lamellar liquid crystal make-up cleansing formulation prepared in this study would be useful for future application in make-up cleansing due to its excellent stability, cleansing ability, and unique hologram-like pattern placed between two polarizing plates.