DOI QR코드

DOI QR Code

Analysis of Hydraulic Fracture Geometry by Considering Stress Shadow Effect during Multi-stage Hydraulic Fracturing in Shale Formation

셰일저류층의 다단계 수압파쇄에서 응력그림자 효과를 고려한 균열형태 분석

  • Yoo, Jeong-min (Dept. of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Park, Hyemin (Dept. of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Wang, Jihoon (Dept. of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Sung, Wonmo (Dept. of Earth Resources and Environmental Engineering, Hanyang University)
  • 유정민 (한양대학교 자원환경공학과) ;
  • 박혜민 (한양대학교 자원환경공학과) ;
  • 왕지훈 (한양대학교 자원환경공학과) ;
  • 성원모 (한양대학교 자원환경공학과)
  • Received : 2020.12.30
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

During multi-stage fracturing in a low permeable shale formation, stress interference occurs between the stages which is called the "stress shadow effect(SSE)". The effect may alter the fracture propagation direction and induce ununiform geometry. In this study, the stress shadow effect on the hydraulic fracture geometry and the well productivity were investigated by the commercial full-3D fracture model, GOHFER. In a homogeneous reservoir model, a multi-stage fracturing process was performed with or without the SSE. In addition, the fracturing was performed on two shale reservoirs with different geomechanical properties(Young's modulus and Poisson's ratio) to analyze the stress shadow effect. In the simulation results, the stress change caused by the fracture created in the previous stage switched the maximum/minimum horizontal stress and the lower productivity L-direction fracture was more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than the relatively ductile Eagle Ford shale, the fracture width in the former was developed thicker, resulting in the larger fracture volume. And the Marcellus shale's Young's modulus is low, the stress effect is less significant than the Eagle Ford shale in the stage 2. The stress shadow effect strongly depends on not only the spacing between fractures but also the geomechanical properties. Therefore, the stress shadow effect needs to be taken into account for more accurate analysis of the fracture geometry and for more reliable prediction of the well productivity.

투과성이 낮은 셰일층에서의 다단계 수압파쇄 시, 파쇄단계 간의 서로 근접한 균열로 인해 지층 간 응력간섭이 발생하는 '응력그림자효과'가 나타날 수 있다. 이로 인해 균열의 전파 방향성이 변화하거나 비정형적인 형태의 균열이 발생하게 된다. 본 연구에서는 응력그림자효과의 영향에 따른 수압파쇄 균열형태와 생산성을 분석하고자 상용 수압파쇄 시뮬레이터 full-3D모델인 'GOHFER'를 사용하였다. 균질한 저류층 모델에서 응력그림자효과 고려 유무에 따른 분석을 수행하였다. 또한 지력학적 물성이 다른 두 셰일층에서 수압파쇄 모델링을 수행하여 영률과 포아송비에 따른 응력그림자효과를 분석하였다. 선행 파쇄단계의 균열로 인한 응력변화는 최대/최소 주응력을 역전시켜 T-방향보다는 생산성이 미비한 L-방향 균열이 주로 형성되었다. 또한 Marcellus 셰일의 경우 연성 특성을 갖는 Eagle Ford 셰일에 비해 높은 취성으로 인해 균열의 폭이 더 두껍게 형성되어 균열 체적이 더욱 크게 산출되었다. Marcellus 셰일지층의 영률이 Eagle Ford 셰일에 비해 크게 낮기 때문에 stage 2에서 응력그림자효과의 영향을 적게 받는 것을 확인할 수 있었다. 이처럼 응력그림자효과는 균열 간의 간격 뿐만 아니라 지력학적 물성에 따라서도 크게 달라진다. 그러므로 좀 더 정확한 균열 형태와 현실성 있는 생산성 예측하기 위해 응력그림자효과는 고려되어야 한다.

Keywords

References

  1. Cipolla, C., E. Lolon, and M. Mayerhofer. "The Effect of Proppant Distribution and Un-propped Fracture Conductivity on Well Performance in Unconventional Gas Reservoirs.", SPE Hydraulic Fracturing Technology Conference, (2009).
  2. Chen, R., Xue, X., Datta-Gupta, A., Yu, H., and Kalyanaraman, N. "The Impact of Cluster Spacing on Multi-Fractured Well Performance.", SPE Liquids-Rich Basins Conference-North America, (2019).
  3. El Sgher, M., Aminian, K., and Ameri, S., "The Stress Shadowing Impact on the Production Performance of Marcellus Shale.", SPE Annual Technical Conference and Exhibition, (2019).
  4. Wu, K., and Olson, J. E., "Investigation of the impact of fracture spacing and fluid properties for interfering simultaneously or sequentially generated hydraulic fractures.", SPE Production & Operations, 28(04), 427-436, (2013). https://doi.org/10.2118/163821-PA
  5. Yang, F., Britt, L. K., and Dunn-Norman, S., "Performance Comparison of Transversely and Longitudinally Fractured Horizontal Wells Over Varied Reservoir Permeability.", SPE Journal, 21(05), 1-537, (2016). https://doi.org/10.2118/174553-PA
  6. Dohmen, T., Zhang, J., and Blangy, J. P., "Measurement and analysis of 3D stress shadowing related to the spacing of hydraulic fracturing in unconventional reservoirs.", SPE Annual Technical Conference and Exhibition, (2014).
  7. Tan, Y., Cuervo, S., Malhotra, S., and Wang, S. "Stress Inversion using Microseismic Moment Tensors in the Vaca Muerta Shale.", Unconventional Resources Technology Conference, (2019).
  8. Pankaj, P., Shukla, P., Kavousi, P., and Carr, T., "Determining optimal well spacing in the Marcellus shale: A case study using an integrated workflow.", SPE Argentina Exploration and Production of Unconventional Resources Symposium, (2018).
  9. Economides, M. J., and Nolte, K. G. Reservoir stimulation Vol. 2. Englewood Cliffs, NJ: Prentice Hall, (1989).
  10. Suarez-Rivera, R., Burghardt, J., Edelman, E., Stanchits, S., and Surdi, A., "Geomechanics considerations for hydraulic fracture productivity.", 47th US Rock Mechanics/Geomechanics Symposium, (2013).
  11. Liu, N., Zhang, Z., Zou, Y., Ma, X., and Zhang, Y., "Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir.", Petroleum Exploration and Development, 45(6), 1129-1138, (2018). https://doi.org/10.1016/S1876-3804(18)30116-2
  12. He, Q., Suorineni, F. T., Ma, T., and Oh, J., "Effect of discontinuity stress shadows on hydraulic fracture re-orientation.", International Journal of Rock Mechanics and Mining Sciences, 91, 179-194, (2017). https://doi.org/10.1016/j.ijrmms.2016.11.021
  13. Daneshy, A., "Analysis of Front and Tail Stress Shadowing in Horizontal Well Fracturing: Their Consequences with Case History.", SPE Hydraulic Fracturing Technology Conference and Exhibition, (2017).
  14. Daneshy, A., "Analysis of Horizontal Well Fracture Interactions, and Completion Steps for Reducing the Resulting Production Interference.", SPE Annual Technical Conference and Exhibition, (2018).
  15. Wei, Y., and Economides, M. J., "Transverse hydraulic fractures from a horizontal well.", SPE Annual Technical Conference and Exhibition, (2005).
  16. Barree, R. D., Gilbert, J. V., and Conway, M., "Stress and rock property profiling for unconventional reservoir stimulation.", SPE Hydraulic Fracturing Technology Conference. (2009).
  17. Barree, R. D.,S "stress Shadowing and Fracture Interference in GOHFER.", Barree & Associates, (2015).
  18. Liang, P., Mattar, L., & Moghadam, S. Analyzing variable rate/pressure data in transient linear flow in unconventional gas reservoirs. In Canadian Unconventional Resources Conference, (2011).
  19. Jang, Y., Kim, J., Wang, J., and Sung, W., "Analysis of Hydraulic Fracture Propagating Performance with Geomechanical Characteristics in Naturally Fractured Shale Formations.", SPE Asia Pacific Hydraulic Fracturing Conference, (2016).
  20. Rickman, R., Mullen, M. J., Petre, J. E., Grieser, W. V., and Kundert, D., "A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale.", SPE annual technical conference and exhibition, (2008).
  21. Rafiee, M., Soliman, M. Y., Pirayesh, E., and Emami Meybodi, H., "Geomechanical considerations in hydraulic fracturing designs.", SPE Canadian Unconventional Resources Conference, (2012).
  22. Roussel, N. P., & Sharma, M. M., "Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions.", SPE annual technical conference and exhibition, (2011).