• Title/Summary/Keyword: cytotoxic T lymphocyte (CTL)

Search Result 26, Processing Time 0.025 seconds

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

Immunotherapeutic Effects of Dendritic Cells Pulsed with a Coden-optimized HPV 16 E6 and E7 Fusion Gene in Vivo and in Vitro

  • Zhou, Zhi-Xiang;Li, Dan;Guan, Shan-Shan;Zhao, Chen;Li, Ze-Lin;Zeng, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3843-3847
    • /
    • 2015
  • Background: Cervical cancer is the second most common cause of cancer related death of women. Persistent HPV infection, especially with high-risk types such as HPV16 and HPV18, has been identified to be the primary cause of cervical cancer. E6 and E7 are the major oncoproteins of high-risk HPVs, which are expressed exclusively in HPV infected tissues, and thereby represent ideal therapeutic targets for immunotherapy of cervical cancer. Materials and Methods: In this work, we used recombinant adenovirus expressing coden-optimized HPV16 E6 and E7 fusion protein (Ad-ofE6E7) to prime dendritic cells (DC-ofE6E7), to investigate the ability of primed DC vaccine in eliciting antitumor immunity in vitro and vivo. Results: Our results indicated that DC-ofE6E7 vaccine co-culturing with splenocytes could strongly induce a tumor-specific cytotoxic T lymphocyte (CTL) response and kill the TC-1 cells effectively in vitro. Moreover, DC-ofE6E7 vaccine induced protective immunity against the challenge of TC-1 cancer cells in vivo. Conclusions: The results suggested that the HPV16 ofE6E7 primed DC vaccine has potential application for cervical cancer immunotherapy.

Restoration of Declined Immune Responses and Hyperlipidemia by Rubus occidenalis in Diet-Induced Obese Mice

  • Lee, Youngjoo;Kim, Jiyeon;An, Jinho;Lee, Sungwon;Lee, Heetae;Kong, Hyunseok;Song, Youngcheon;Choi, Hye Ran;Kwon, Ji-Wung;Shin, Daekeun;Lee, Chong-Kil;Kim, Kyungjae
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.140-148
    • /
    • 2017
  • Hyperlipidemia, which is closely associated with a fatty diet and aging, is commonly observed in the western and aged society. Therefore, a novel therapeutic approach for this disease is critical, and an immunological view has been suggested as a novel strategy, because hyperlipidemia is closely associated with inflammation and immune dysfunction. In this study, the effects of an aqueous extract of Rubus occidentalis (RO) in obese mice were investigated using immunological indexes. The mice were fed a high-fat diet (HFD) to induce hyperlipidemia, which was confirmed by biochemical analysis and examination of the mouse physiology. Two different doses of RO and rosuvastatin, a cholesterol synthesis inhibitor used as a control, were orally administered. Disturbances in immune cellularity as well as lymphocyte proliferation and cytokine production were significantly normalized by oral administration of RO, which also decreased the elevated serum tumor necrosis factor $(TNF)-{\alpha}$ level and total cholesterol. The specific immune-related actions of RO comprised considerable improvement in cytotoxic T cell killing functions and regulation of antibody production to within the normal range. The immunological evidence confirms the significant cholesterol-lowering effect of RO, suggesting its potential as a novel therapeutic agent for hyperlipidemia and associated immune decline.

Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine

  • Zhang, Cong;Zhou, Jiangfei;Liu, Zhixin;Liu, Yongqing;Cai, Kairui;Shen, Tengfei;Liao, Chengshui;Wang, Chen
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.817-826
    • /
    • 2018
  • The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.

Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine

  • Lee, Jun-Sik;Kim, Dae-Hyun;Lee, Chang-Min;Ha, Tae-Kwun;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Son, Kwang-Hee;Jung, In-Duk;Lee, Eun-Kyung;Shin, Yong-Kyoo;Ahn, Soon-Cheol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Background: Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-${\kappa}B$. Methods: The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results: DPT promoted the activation of $CD8^+$ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-${\gamma}$ production and induction of cytotoxic T lymphocyte activity. Conclusion: These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.

Comparison of immune cell populations in bronchoalveolar lavage cells and PBMC cytokine expressions in porcine reproductive and respiratory syndrome and porcine respiratory disease complex

  • Yang, Myeon-Sik;Jeong, Chang-Gi;Nazki, Salik;Mattoo, Sameer ul Salam;Lee, Sang-Myeong;Kim, Won-Il;Kim, Bumseok
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.201-216
    • /
    • 2019
  • Porcine reproductive and respiratory syndrome (PRRS) is characterized by reproductive failure in sows and respiratory distress in all age pigs. Porcine respiratory disease complex (PRDC) is a disease caused by opportunistic bacterial infection secondary to a weakened immune system by a preceding respiratory infection. In this study, we tried to compare the immune responses in PRRS and PRDC groups to clearly characterize the disease severity. Eighty-five pigs were infected with various Korean field PRRS virus strains. Infected animals were classified into PRRS (n=32) and PRDC (n=53) groups based on lung lesions such as interstitial pneumonia, suppurative pneumonia, and pleuropneumonia. The immune cell population of bronchoalveolar lavage cells (BALc) was evaluated on 14 and 28 days post infection (dpi) and PMBC cytokine expression was measured on 0, 3, 7, 14 dpi to investigate early inflammatory reactions. Pulmonary lesion severity was negatively correlated with alveolar macrophage (AM) in both PRRS and PRDC groups on 14 and 28 dpi. AM in BALc was less populated in PRDC group on 28 dpi compared to PRRS group. AM in BALc was significantly less populated in PRDC group on 28 dpi compared to 14 dpi. In addition, cytotoxic T lymphocyte (CTL) in BALc was higher populated in PRDC group on 14 dpi and 28 dpi compared to PRRS group. In the case of PBMC cytokine TNF-α, IFN-α, IL-1β, IFN-γ, FoxP3, and IL-2, the PRRS group showed higher expression than the PRDC group on 7 dpi, 14 dpi, 7 dpi, 14 dpi, 14 dpi, and 14 dpi, respectively. On the other hand, in the case of IFN-β, IL-6, IL-8, IL-4, and IL-17, the PRDC group showed higher PBMC cytokine expression at 14 dpi, 7 dpi, 14 dpi, 3 dpi, and 3 dpi, respectively, than the PRRS group. Based on these results, our study could characterize differential immune responses in pigs with PRRS or PRDC.