Browse > Article
http://dx.doi.org/10.7853/kjvs.2019.42.4.201

Comparison of immune cell populations in bronchoalveolar lavage cells and PBMC cytokine expressions in porcine reproductive and respiratory syndrome and porcine respiratory disease complex  

Yang, Myeon-Sik (College of Veterinary Medicine, Jeonbuk National University)
Jeong, Chang-Gi (College of Veterinary Medicine, Jeonbuk National University)
Nazki, Salik (College of Veterinary Medicine, Jeonbuk National University)
Mattoo, Sameer ul Salam (College of Environmental & Bioresource Sciences, Jeonbuk National University)
Lee, Sang-Myeong (College of Environmental & Bioresource Sciences, Jeonbuk National University)
Kim, Won-Il (College of Veterinary Medicine, Jeonbuk National University)
Kim, Bumseok (College of Veterinary Medicine, Jeonbuk National University)
Publication Information
Korean Journal of Veterinary Service / v.42, no.4, 2019 , pp. 201-216 More about this Journal
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is characterized by reproductive failure in sows and respiratory distress in all age pigs. Porcine respiratory disease complex (PRDC) is a disease caused by opportunistic bacterial infection secondary to a weakened immune system by a preceding respiratory infection. In this study, we tried to compare the immune responses in PRRS and PRDC groups to clearly characterize the disease severity. Eighty-five pigs were infected with various Korean field PRRS virus strains. Infected animals were classified into PRRS (n=32) and PRDC (n=53) groups based on lung lesions such as interstitial pneumonia, suppurative pneumonia, and pleuropneumonia. The immune cell population of bronchoalveolar lavage cells (BALc) was evaluated on 14 and 28 days post infection (dpi) and PMBC cytokine expression was measured on 0, 3, 7, 14 dpi to investigate early inflammatory reactions. Pulmonary lesion severity was negatively correlated with alveolar macrophage (AM) in both PRRS and PRDC groups on 14 and 28 dpi. AM in BALc was less populated in PRDC group on 28 dpi compared to PRRS group. AM in BALc was significantly less populated in PRDC group on 28 dpi compared to 14 dpi. In addition, cytotoxic T lymphocyte (CTL) in BALc was higher populated in PRDC group on 14 dpi and 28 dpi compared to PRRS group. In the case of PBMC cytokine TNF-α, IFN-α, IL-1β, IFN-γ, FoxP3, and IL-2, the PRRS group showed higher expression than the PRDC group on 7 dpi, 14 dpi, 7 dpi, 14 dpi, 14 dpi, and 14 dpi, respectively. On the other hand, in the case of IFN-β, IL-6, IL-8, IL-4, and IL-17, the PRDC group showed higher PBMC cytokine expression at 14 dpi, 7 dpi, 14 dpi, 3 dpi, and 3 dpi, respectively, than the PRRS group. Based on these results, our study could characterize differential immune responses in pigs with PRRS or PRDC.
Keywords
PRRS; PRDC; BALc; PBMC cytokine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thanawongnuwech, R., B. Thacker, P. Halbur and E. L. Thacker. 2004. Increased Production of Proinflammatory Cytokines following Infection with Porcine Reproductive and Respiratory Syndrome Virus and Mycoplasma hyopneumoniae. Clin. Vaccine Immunol. 11(5): 901-908.   DOI
2 Van Gucht, S., G. Labarque and K. Van Reeth. 2004. The combination of PRRS virus and bacterial endotoxin as a model for multifactorial respiratory disease in pigs. Vet. Immunol. Immunopathol. 102(3): 165-178.   DOI
3 Van Gucht, S., K. Van Reeth and M. Pensaert. 2003. Interaction between porcine reproductive-respiratory syndrome virus and bacterial endotoxin in the lungs of pigs: potentiation of cytokine production and respiratory disease. J. Clin. Microbiol. 41(3): 960-966.   DOI
4 Winer, J., C. K. S. Jung, I. Shackel and P. M. Williams. 1999. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270(1): 41-49.   DOI
5 Yoon, K.-J., J. J. Zimmerman, S. L. Swenson, M. J. McGinley, K. A. Eernisse, A. Brevik, L. L. Rhinehart, M. L. Frey, H. T. Hill and K. B. Platt. 1995. Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection. J. Vet. Diagn. Invest. 7(3): 305-312.   DOI
6 Zachary, J. F. and M. D. McGavin. 2012. Chapter. pp. 329. Pathologic Basis of Veterinary Disease, 5ed. Elsevier Mosby. St. Louis, MO, USA.
7 Zimmerman, J. J., S. A. Dee, D. J. Holtkamp, M. P. Murtaugh, T. Stadejek, G. W. Stevenson, M. Torremorell, H. Yang and J. Zhang. 2019. Chapter. pp. 685-708. Diseases of Swine. 11(ed). John Wiley & Sons, Inc. Hoboken, NJ, USA.
8 Thacker, E. L. 2001. Immunology of the Porcine Respiratory Disease Complex. Vet. Clin. North Am. Food Anim. Pract. 17(3): 551-565.   DOI
9 Choi, C., D. Kwon, K. Jung, Y. Ha, Y. H. Lee, O. Kim, H. K. Park, S. H. Kim, K. K. Hwang and C. Chae. 2006. Expression of Inflammatory Cytokines in Pigs Experimentally Infected with Mycoplasma hyopneumoniae. J. Comp. Pathol. 134(1): 40-46.   DOI
10 Bacha Jr, W. J. and L. M. Bacha. 2012. Chapter. pp. 3-10. Color atlas of veterinary histology. 3(ed). John Wiley & Sons, Inc. Hoboken, NJ, USA.
11 Choi, Y. K., S. M. Goyal and H. S. Joo. 2003. Retrospective analysis of etiologic agents associated with respiratory diseases in pigs. The Canadian veterinary journal 44(9): 735.
12 Darwich, L. and E. Mateu. 2012. Immunology of porcine circovirus type 2 (PCV2). Virus Res. 164(1-2): 61-67.   DOI
13 Darwich, L., M. Gimeno, M. Sibila, I. Diaz, E. de la Torre, S. Dotti, L. Kuzemtseva, M. Martin, J. Pujols and E. Mateu. 2011. Genetic and immunobiological diversities of porcine reproductive and respiratory syndrome genotype I strains. Vet. Microbiol. 150(1): 49-62.   DOI
14 Garcia-Morante, B., J. Segales, L. Fraile, A. P. de Rozas, H. Maiti, T. Coll and M. Sibila. 2016. Assessment of Mycoplasma hyopneumoniae-induced pneumonia using different lung lesion scoring systems: a comparative review. J. Comp. Pathol. 154(2-3): 125-134.   DOI
15 Gomez-Laguna, J., F. J. Salguero, F. J. Pallares, M. Fernandez de Marco, I. Barranco, J. J. Ceron, S. Martinez-Subiela, K. Van Reeth and L. Carrasco. 2010. Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comp. Immunol. Microbiol. Infect. Dis. 33(6): e51-e58.   DOI
16 Hansen, M. S., S. E. Pors, H. E. Jensen, V. Bille-Hansen, M. Bisgaard, E. M. Flachs and O. L. Nielsen. 2010. An Investigation of the Pathology and Pathogens Associated with Porcine Respiratory Disease Complex in Denmark. J. Comp. Pathol. 143(2): 120-131.   DOI
17 Gomez-Laguna, J., F. J. Salguero, I. Barranco, F. J. Pallares, I. M. Rodriguez-Gomez, A. Bernabe and L. Carrasco. 2010. Cytokine Expression by Macrophages in the Lung of Pigs Infected with the Porcine Reproductive and Respiratory Syndrome Virus. J. Comp. Pathol. 142(1): 51-60.   DOI
18 Halbur, P. G., P. S. Paul, M. L. Frey, J. Landgraf, K. Eernisse, X. J. Meng, M. A. Lum, J. J. Andrews and J. A. Rathje. 1995. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet. Pathol. 32(6): 648-660.   DOI
19 Han, K., H. Seo, Y. Oh, I. Kang, C. Park and C. Chae. 2013. Comparison of the virulence of European and North American genotypes of porcine reproductive and respiratory syndrome virus in experimentally infected pigs. The Veterinary Journal 195(3): 313-318.   DOI
20 Jensen, H. E. 2011. Chapter. pp. 83-103. Necropsy: a handbook and atlas. Samfundslitteratur.
21 Kang, H., J. E. Yu, J.-E. Shin, A. Kang, W.-I. Kim, C. Lee, J. Lee, I.-S. Cho, S.-E. Choe and S.-H. Cha. 2018. Geographic distribution and molecular analysis of porcine reproductive and respiratory syndrome viruses circulating in swine farms in the Republic of Korea between 2013 and 2016. BMC Vet. Res. 14(1): 160.   DOI
22 Lee, S.-M., S. K. Schommer and S. B. Kleiboeker. 2004. Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Vet. Immunol. Immunopathol. 102(3): 217-231.   DOI
23 Opriessnig, T., L. Gimenez-Lirola and P. Halbur. 2011. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 12(2): 133-148.   DOI
24 Albina, E. 1997. Epidemiology of porcine reproductive and respiratory syndrome (PRRS): An overview. Vet. Microbiol. 55(1): 309-316.   DOI
25 Loving, C. L., F. A. Osorio, M. P. Murtaugh and F. A. Zuckermann. 2015. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet. Immunol. Immunopathol. 167(1): 1-14.   DOI
26 Loving, C. L., S. L. Brockmeier and R. E. Sacco. 2007. Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus. Immunology 120(2): 217-229.   DOI
27 Lunney, J. K., Y. Fang, A. Ladinig, N. Chen, Y. Li, B. Rowland and G. J. Renukaradhya. 2016. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annual review of animal biosciences 4: 129-154.   DOI
28 Mateu, E. and I. Diaz. 2008. The challenge of PRRS immunology. The Veterinary Journal 177(3): 345-351.   DOI
29 Palzer, A., M. Ritzmann, G. Wolf and K. Heinritzi. 2008. Associations between pathogens in healthy pigs and pigs with pneumonia. Vet. Rec. 162(9): 267-271.   DOI
30 Shi, M., T. T.-Y. Lam, C.-C. Hon, M. P. Murtaugh, P. R. Davies, R. K.-H. Hui, J. Li, L. T.-W. Wong, C.-W. Yip and J.-W. Jiang. 2010. Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. J. Virol. 84(17): 8700-8711.   DOI
31 Summerfield, A. and K. C. McCullough. 2009. The porcine dendritic cell family. Dev. Comp. Immunol. 33(3): 299-309.   DOI
32 Sun, Y., M. Han, C. Kim, J. G. Calvert and D. Yoo. 2012. Interplay etween interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 4(4): 424-446.   DOI