• Title/Summary/Keyword: cytosolic components

Search Result 33, Processing Time 0.029 seconds

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Thermotolerance Inhibits Various Stress-induced Apoptosis in NIH3T3 Cells

  • Park, Jun-Eui;Lee, Kong-Joo;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • When NIH3T3 cells were exposed to mild heat and recovered at $37^{\circ}C$ for various time intervals, they were thermotolerant and resistant to subsequent stresses including heat, oxidative stresses, and antitumor drug methotrexate which are apoptotic inducers. The induction kinetics of apoptosis by stresses were determined by DNA fragmentation and protein synthesis using $[35^S]$methionine pulse labeling. We investigated the hypothesis that thermotolerant cells were resistant to apoptotic cell death compared to control cells when both cells were exposed to various stresses inducing apoptosis. The cellular changes in thermotolerant cells were examined to determine which components are involved in this resistance. At first, the degree of resistance correlates with the extent of heat shock protein synthesis which were varied depending on the heating times at $45^{\circ}C$ and recovery times at $37^{\circ}C$after heat shock. Secondly, membrane permeability change was observed in thermotolerant cells. When cells prelabeled with $[^{3}H]$thymidine were exposed to various amounts of heat and recovered at $37^{\circ}C$ for 1/2 to 24 h, the permeability of cytosolic $[^{3}H]$thymidine in thermotolerant cells was 4 fold higher than that in control cells. Thirdly, the protein synthesis rates in thermotolerant and control cells were measured after exposing the cells to the same extent of stress. It turned out that thermotolerant cells were less damaged to same amount of stress than control cells, although the recovery rates are very similar to each other. These results demonstrate that an increase of heat shock proteins and membrane changes in thermotolerant cells may protect the cells from the stresses and increase the resistance to apoptotic cell death, even though the exact mechanism should be further studied.

  • PDF

Effects of Diallyl Disulfide on the Hepatic Glutathione Peroxidase Activity in Rat (흰쥐 간 Glutathione peroxidase 활성에 미치는 Diallyl disulfide의 영향)

  • Huh, Keun;Lee, Sang-Il;Park, Jong-Min
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.144-150
    • /
    • 1986
  • Glutathione peroxidase might play an important role in the protection of cellular structures against oxidative challange by hydrogen peroxide and several organic hydroperoxides. It is widely accepted that allicin is biological active component of garlic, and allicin is easily degraded to diallyl disulfide and other components. This study was attempted to elucidate the effect of diallyl disulfide on some biological activities. It was observed that the activity of serum transaminase and glutathione level in liver were not changed by the treatment of diallyl disulfide. The liver cytosolic glutathione peroxidase activity was significantly enhanced. Whereas, mitochondrial enzyme activity was slightly increased. In the presence of diallyl disulfide in vitro, $V_{max}$ value of glutathione peroxidase for hydrogen peroxide was increased. On the other hand, Km value was not changed.

  • PDF

Effects of Dietary Prosomillet on cholesterol and Fatty Acid Metabolism in Rats Fed High Cholesterol Diets

  • Cho, Sung-Hee;Jung, Seung-Eun;Lee, Hye-Kyung;Ha, Tae-Youl
    • Nutritional Sciences
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • To study the effect of prosomillet (Panicum milaceum) on lipid metabolism, male Sprague-Dawley rats weighing 190$\pm$8g were fed six experimental diets for four weeks. The six diets based on AIN-76 composition consisted of one cholesterol-free(normal) and five 1%(w/w) cholesterol diets, i.e. control, two diets containing additional 0.3 and 0.6%(w/w) methanol extracts of prosomillet and another two diets containing 15 and 30% (w/w) prosomillet powder. There was no difference in weight gains between the groups but relative liver weights increased under the cholestrol diets. Plasma levels of total cholesterol and triglyceride(TG) decreased by 23-27% and by 37-52%, respectively, in the four prosomillet diet groups compared to those of the normal and control groups. Whereas in the liver, only TG levels decreased in the prosomillet diet groups. Fecal excretions of bile acid and cholesterol significantly with methanol extracts of prosomillet. There was a significant increase in the activity of hepatic microsomal cholesterol 7$\alpha$-hydroxylase when feeding 1% cholesterol but prosomillet in the diet, either as in the form of powder or methanol extract, appeared to have only slight additional effects, namely increases in enzyme activity. The activity of liver cytosolic glucose-6-phophate dehydrogenase (G6PDH) tended to be reduced with high cholesterol diets and dropped markedly by 15% using additional prosomillet powder. Those of the liver cytoxolic malic enzyme had a similar tendency to those of G6PDH. The results indicate that certain active components in prosmillet other than fiber have the potential to exert hypolipidemic effects via regulating cholesterol excretions and lipogenesis.

  • PDF

Anti-Oxidant Activities of Acanthopanax senticosus Stems and Their Lignan Components

  • Lee, Sang-Hyun;Son, Dong-Wook;Ryu, Ji-Young;Lee, Yeon-Sil;Jung, Sang-Hoon;Kang, Jung-Il;Lee, Sang-Yun;Kim, Hyun-Su;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.106-110
    • /
    • 2004
  • The antioxidant activities of Acanthopanax senticosus stems were evaluated in $CCl_4$-intoxicated rats. The n-butanol fraction from the water extract of the stems, when pretreated orally at 200 mg/kg/day for 7 consecutive days in rats, was demonstrated to exhibit significant increases in antioxidant enzyme activities such as hepatic cytosolic superoxide dismutase, catalase and glutathione peroxidase by 30.31, 19.82 and 155%, respectively. The n-butanol fraction whereas showed a significant inhibition of serum GPT activity (65.79% inhibition) elevated with hepatic damage induced by $CCl_4$-intoxication. Eleutheroside B, a lignan component, isolated from the n-butanol fraction was found to cause a moderate free radical scavenging effection DPPH, its scavenging potency as indicated in $IC_{50}$ value, being 58.5$\mu$ M. These results suggested that the stems of A. senticosus possess not only antioxidant but also hepatoprotective activities.

Mating Disruption of Grapholita molesta by RNA Interference of a Fatty Acid Desaturase Expressed in Adult Abdomen (복숭아순나방 성충 복부에서 발현하는 불포화효소의 RNA 간섭과 교미교란)

  • Kim, Kyusoon;Jung, Chung Ryul;Yang, Chang Yeol;Kwon, Gimyeon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • Two major sex pheromone components (Z-8-dodecenyl acetate and E-8-dodecenyl acetate) are known in the peach fruit moth, Grapholita molesta. From a putative biosynthetic pathway of these sex pheromone components, delta 10 desaturase ($10{\Delta}$ DES) has been proposed to play a crucial role in synthesizing a species-specific stereoisomer of the double bond. However, its molecular identity was not known. This study determined a putative desaturase (Gm-comp1575) as a $10{\Delta}$ DES candidate from G. molesta transcriptome constructed from the sex pheromone gland. Its open reading frame encodes 370 amino acid sequence with a predicted molecular weight at 43.2 kDa and isoelectric point at 8.77. It was predicted to have four transmembrane domains and six glycosylation sites at N-terminal or cytosolic domains. A phylogenetic analysis with its predicted amino acid sequence indicated that Gm-comp1575 is closely related with known $10{\Delta}$ DES genes of other insects. Gm-comp1575 transcript was detected in female adults at sex pheromone gland and other abdominal tissues. RNA interference of Gm-comp1575 significantly reduced attractiveness of virgin females in apple orchard compared to control females. These results suggest that Gm-comp1575 is associated with sex pheromone biosynthesis of G. molesta.

The activation of NLRP3 inflammasome potentiates the immunomodulatory abilities of mesenchymal stem cells in a murine colitis model

  • Ahn, Ji-Su;Seo, Yoojin;Oh, Su-Jeong;Yang, Ji Won;Shin, Ye Young;Lee, Byung-Chul;Kang, Kyung-Sun;Sung, Eui-Suk;Lee, Byung-Joo;Mohammadpour, Hemn;Hur, Jin;Shin, Tae-Hoon;Kim, Hyung-Sik
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.329-334
    • /
    • 2020
  • Inflammasomes are cytosolic, multiprotein complexes that act at the frontline of the immune responses by recognizing pathogen- or danger-associated molecular patterns or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects. In this study, we investigated the expression and functional regulation of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in human umbilical cord blood-derived MSCs (hUCB-MSCs). hUCB-MSCs expressed inflammasome components that are necessary for its complex assembly. Interestingly, NLRP3 inflammasome activation suppressed the differentiation of hUCB-MSCs into osteoblasts, which was restored when the expression of adaptor proteins for inflammasome assembly was inhibited. Moreover, the suppressive effects of MSCs on T cell responses and the macrophage activation were augmented in response to NLRP3 activation. In vivo studies using colitic mice revealed that the protective abilities of hUCB-MSCs increased after NLRP3 stimulation. In conclusion, our findings suggest that the NLRP3 inflammasome components are expressed in hUCB-MSCs and its activation can regulate the differentiation capability and the immunomodulatory effects of hUCB-MSCs.

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

Bromate Formation by Ozonation Process and It′s Effect on Renal Toxicity in rat (오존처리에 의한 Bromate의 생성 및 흰쥐의 신장독성에 미치는 영향)

  • 정운용;이무강;최종원
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.442-451
    • /
    • 2002
  • In oder to investigate the effects of pH and temperature on the formation of bromate ion, which is ozonation by-products of bromine containing natural water. At the same intial pH condition, the increase of pH shown similar trends even if the reaction variables such as temperature and reaction time of ozonation were changed. As pH and temperature were increasing, the bromate concentration was increased but bromine components (HOBr/OBr-) were decreased with increasing pH from 3 to 10. Lipid peroxide content in the kidney was increased by bromate which was ingestion with 0.4g/L for 24 weeks in drinking water. Renal cytosolic enzyme system (XO, AO) of bromate group were significantly increased in comparison with those of normal group. But microsomal enzyme system were not affected. BUN level and urinary ${\gamma}$-glutamyltransferase activity were significantly increased in comparison with those of the normal. But, urinary lactate dehydrogenase activity was not affected. Renal glutathione content of rat was significantly decreased in comparison with those of normal rat given bromate. Renal glutathione S-transferase and ${\gamma}$-glutamylcysteine synthetase activities were significantly decreased in bromate-treated group, but change in renal glutathione reductase activity was not significantly different from any other experimental group.