• Title/Summary/Keyword: cytokine regulation

Search Result 328, Processing Time 0.027 seconds

An Atopic Preventive Drink (APD) reduces Th2 cytokines in LPS-treated RAW 264.7 cells

  • Song, Gyl-Hoon;Park, Eui-Seong;Lee, Seung-Min;Kim, Tae-Young;Park, Kun-Young
    • CELLMED
    • /
    • v.7 no.3
    • /
    • pp.15.1-15.6
    • /
    • 2017
  • We analyzed the effects of an Atopic Preventive Drink (APD) on the regulation of Th2 cytokines using RAW 264.7 macrophage cells. In the evaluation of nitric oxide (NO) production in cells, NO production levels were shown to be elevated only in the APD-treated group in a dose-dependent manner. In the lipopolysaccharide (LPS) with APD-treated group, NO production significantly decreased as APD concentration increased. Further, mRNA expression levels and protein concentrations of pro-inflammatory cytokines in cells were determined. Th2 stimulatory cytokine ($IL-1{\beta}$) and Th2 cytokine (IL-6 and IL-10) levels were significantly reduced in the LPS with APD-treated group compared to the only LPS-treated group. mRNA expression levels of inflammatory-related genes (COX-2 and iNOS) were significantly reduced in the LPS with APD-treated group compared to the only LPS-treated group. These results suggest that APD has an anti-atopic effect by reducing mRNA and proteins expressions of Th2 cytokines and inflammatory-related genes.

Antiasthmic Effect of Fermented Artemisia princeps in Asthmic Mice Induced by Ovalbumin

  • Bae, Eun-Ah;Min, Sung-Won;Lee, Bo-Mi;Kim, Nam-Jae;Baek, Nam-In;Han, Eun-Joo;Chung, Hae-Gon;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1554-1557
    • /
    • 2007
  • Artemisia princeps Pampanini (AP) was fermented with Bifidobacterium infantis K-525 and its antiasthmic effect investigated. AP and fennented AP (FAP) reduced the IgE level in the blood of ovalbumin-induced asthmic mice. Moreover, FAP reduced the IgE, proinflammatory cytokine IL-6, and IL-4 levels in the trachea, as well as in the lung of the experimental asthmic mice, whereas AP only reduced the IgE and IL-6 levels in the lungs. Nonetheless, AP and FAP both inhibited the mRNA expression of IL-6 and TNF-${\alpha}$ in IgE-induced RBL-2H3 cells. The in vivo antiasthmic effect of FAP was more potent than that of AP. Therefore, these findings suggest that the enhanced antiasthmic effect of AP after bifidus fermentation was possibly due to the regulation of the proinflammatory cytokine biosynthesis of IL-6 and TNF-${\alpha}$.

Inhibitory effect of epigallocatechin from Camellia sinensis leaves against pro-inflammatory mediator release in macrophages

  • Cho, Jun-Hyo;Hong, Eun-Jin;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • To investigate the anti-inflammatory activity of natural products, we determined the anti-inflammatory activity of purified epigallocatechin (EGC) from Camellia sinensis leaves. In the present study, we found that EGC inhibited the production of proinflammatory mediators (IL-6, TNF-${\alpha}$, NO, and $PGE_2$) in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Suppression of IL-6 seems to be at least partly attributable to the inhibitory effect of EGC. TNF-${\alpha}$ is a major cytokine produced by LPS-induced macrophages, and they have a wide variety of biological functions including regulation of inflammation. The inhibition of IL-6 and TNF-${\alpha}$ production by EGC may downregulate the acute-phase response to LPS, thereby reducing LPS-induced inflammation. In addition to IL-6 and TNF-${\alpha}$, EGC effectively reduced the production of other key inflammatory mediators, including NO and $PGE_2$. The inhibitory effect of EGC on NO and $PGE_2$ production was supported by the suppression of inducible nitric oxide synthase and COX-2 at protein levels. These results support the traditional use of EGC in the alleviation of various inflammation-associated diseases and suggest that EGC might be useful in the development of new functional foods for inflammatory diseases.

Aloe-Emodin Protects RIN-5F (Pancreatic β-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3

  • Alshatwi, Ali A;Subash-Babu, P.
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic ${\beta}$-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-${\gamma}$, IL-$1{\beta}$,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE ($20{\mu}M$) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.

Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

  • Lee, Dong-Hyup;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2009
  • Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-$l\beta$ plus TNF-$\alpha$), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-l induction in rat VSMCs. Aprotinin induced HO-l protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-l inhibitor, tin protoporphyrin IX (SnPPIX). HO-l is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties.

The Beneficial Effect of Platycodon grandiflorum on DSS-induced Colitis through Regulation of HIF-1α in Mice

  • Yang, Mi-Ok;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.35 no.3
    • /
    • pp.391-398
    • /
    • 2022
  • Ulcerative colitis (UC) is a typical inflammatory colon disorder. Platycodon grandiflorum (PG) is known to exert various beneficial effects including anti-oxidative and anti-bacterial properties and improvements in liver function. However, the improving effect and mechanism of PG on intestinal inflammation are not fully understood. The present research was designed to investigate the effect of PG on the clinical signs of DSS-induced colitis in mice. The ameliorative effects of PG on inflammatory cytokine expression and the activation of hypoxia-inducible-factor (HIF)-1α in DSS-treated colon tissue were also determined. Our results showed that mice treated with DSS displayed the main clinical symptoms of colitis, including weight loss, bloody stools, decrease in colon length and diarrhea and PG treatment significantly improved the clinical features induced by DSS in mice. PG inhibited the increase in the levels of inflammatory cytokines caused by DSS in colon tissues. We also showed that the anti-inflammatory mechanism of PG involved suppressing the activation of HIF-1α in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from PG for UC treatment.

Comparison of Anti-Inflammation Effects of Specimens Before and After the Oil Extraction of Raphanus sativus L. Seed in RAW 264.7 Macrophage Activated by LPS

  • Sunyoung Park;Dahyun Mun;Gunwoo Lee;Youngsun Kwon;Hye-yeon Kang;Jeom-Yong Kim
    • CELLMED
    • /
    • v.13 no.6
    • /
    • pp.7.1-7.6
    • /
    • 2023
  • Raphanus sativus L. has been reported to have anti-inflammatory and anti-tumor activity. However, the anti-inflammatory effect and mechanism of action of the Raphanus sativus L. seeds (RSS) with or without oil are still unknown. This study was undertaken to investigate the in-vitro anti-inflammatory effect with or without oil in the RSS on RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Results showed the suppressed LPS-induced secretion of pro-inflammatory mediators such as nitric oxide (NO), inflammatory cytokine (IL-6, TNF-α). Additionally, a decrease in protein expression of iNOS was observed, but nuclear translocation of NF-κB p65 was not inhibited. To elucidate the underlying mechanism of the anti-inflammatory effect of RSS, the involvement of mitogen-activated protein kinase (MAPK) signaling pathways was examined. We also found that RSS blocked LPS-induced phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) signaling but did not affect the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2. These results suggest that RSS may have potential as an anti-inflammatory agent through the inhibition of LPS-induced inflammatory cytokine production via regulation of the JNK pathway.

Anti-inflammatory Effects of Amentoflavone on Modulation of Signal Pathways in LPS-stimulated RAW264.7 Cells

  • Lee, Eun-Jung;Shin, So-Young;Kim, Jin-Kyoung;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2878-2882
    • /
    • 2012
  • Amentoflavone is naturally occurring bioflavonoid that is found in a number of plants. In this paper, the anti-inflammatory activity of amentoflavone in LPS-stimulated macrophages and its mode of action were examined. Using LPS-stimulated RAW264.7 macrophage cells, we found that amentoflavone exerted anti-inflammatory activities through inhibition of nitric oxide (NO) production and tumor necrosis factor (TNF)-${\alpha}$ and macrophage inflammatory protein (MIP)-2 secretion. Amentoflavone (1.0-20 ${\mu}M$) gradually inhibited nitrite production without cytotoxicity. Amentoflavone (1.0 and 10 ${\mu}M$) effectively suppressed both TNF-${\alpha}$ and MIP-2 cytokine release from LPS-stimulated RAW264.7 cells. The expression of mIL-$1{\beta}$ and mMIP-2 cytokine mRNAs was completely inhibited while expression of mMIP-1 was effectively suppressed and mTNF-${\alpha}$ expression was slightly inhibited by 10 ${\mu}M$ amentoflavone. We also demonstrated that the innate immune response to amentoflavone involves the toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) pathways. LPS-induced upregulation of p38 MAPK phosphorylation was significantly reduced by 10 ${\mu}M$ amentoflavone. These results suggest that amentoflavone exhibits effective anti-inflammatory activities through regulation of TLR4 and phosphorylation of p38 MAPKs.

Inhibitory Effect of Rehmannia Glutinosa Pharmacopuncture Solution on β-hexosaminidase Release and Cytokine Production via FcεRI signaling in RBL-2H3 Cells (RBL-2H3세포에서 생지황약침액의 FcεRI 신호전달을 통한 β-hexosaminidase분비와 Cytokine생성 억제 효과)

  • Kang, Kyung-Hwa;Kim, Cheol-Hong
    • Journal of Pharmacopuncture
    • /
    • v.14 no.2
    • /
    • pp.15-24
    • /
    • 2011
  • Background: Type I allergy is involved in allergic asthma, allergic rhinitis, and atopic dermatitis which are accompanied by an acute and chronic allergic inflammatory responses. Rehmannia glutinosa is a traditional medicine in the East Asian region. This study examined whether a Rehmannia Glutinosa pharmacopuncture solution (RGPS) had anti-allergic or anti-inflammatory effects in antigen-stimulated-RBL-2H3 cells. Methods: We determined the effect of RGPS on cell viability using the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay. We also examined the effect of RGPS on the release of ${\beta}$-hexosaminidase and the secretion of IL-4 and TNF-${\alpha}$ using ELISA. In addition, we evaluated the effect of RGPS on the mRNA expression of various cytokines; IL-2, IL-3, IL-4, IL-5, IL-13 and TNF-${\alpha}$ using RT-PCR. Furthermore, we assessed the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-${\kappa}$B using Western blotting after RGPS treatment. Results: We found that RGPS ($10^{-4}$ to $10^{-1}$ dilution) did not cause any cytotoxicity. We observed significant inhibition of ${\beta}$-hexosaminidase release and suppression of the protein secretion of IL-4 and TNF-${\alpha}$ and mRNA expression of multiple cytokines in antigen-stimulated-RBL-2H3 cells after RGPS treatment. Additionally, RGPS suppressed not only the phosphorylation of MAPKs, but also the transcriptional activation of NF-${\kappa}$B in antigen-stimulated-RBL-2H3 cells. Conclusions: These results suggest that RGPS inhibits degranulation and expression of cytokines including IL-4 and TNF-${\alpha}$ via down-regulation of MAPKs and NF-${\kappa}$B activation in antigen-stimulated-RBL-2H3 cells. In conclusion, RGPS may have beneficial effects in the exerting anti-allergic or anti-inflammatory activities.

Effect of Cordycepin Purified from Cordyceps militaris on Th1 and Th2 Cytokines in Mouse Splenocytes

  • Jeong, Min-Ho;Seo, Min Jeong;Park, Jeong Uck;Kang, Byoung Won;Kim, Kyoung-Sook;Lee, Jae Yun;Kim, Gi-Young;Kim, Jung-In;Choi, Yung Hyun;Kim, Kwang Hyuk;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1161-1164
    • /
    • 2012
  • Cordycepin was purified from a mushroom, Cordyceps militaris, and its effect on Th1 and Th2 cytokines was examined. The level of cytokine induction in mouse splenocytes was estimated after co-inoculation of purified cordycepin and LPS. When $5{\mu}g/ml$ of purified cordycepin was exposed to mouse splenocytes for 72 h, the level of a Th1 cytokine IL-12 increased by 2.9-fold. The addition of the purified cordycepin to splenocytes also increased the level of Th2 cytokines, IL-4 and IL-10, by 1.9- and 1.8-fold, respectively. Therefore, cordycepin increases the cytokine levels and may contribute to the up-regulation of cellular and humoral immunity.