• Title/Summary/Keyword: cytochrome c oxidase subunit 1

Search Result 171, Processing Time 0.027 seconds

Molecular Identification and Morphological Descriptions of the Eggs, Larvae and Juvenile of the Previously Unrecorded Species Acanthaphritis unoorum (Perciformes, Percophidae) in Korean Waters (한국산 1미기록종, Acanthaphritis unoorum (농어목, 꼬리점눈퉁이과)의 어란 및 자치어의 분자동정 및 형태기재)

  • Heo, Sung-Hyun;Ban, Tae Woo;Kim, Jin-Koo;Ji, Hwan-Sung;Moon, Seong Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.67-73
    • /
    • 2019
  • We presented detailed morphological descriptions of the eggs, larvae and juvenile of Acanthaphritis unoorum based on specimens collected with bongo nets from Korean waters during the period May 2017-July 2018. We collected 18 individuals including eggs (n= 4, 0.77-0.85 mm in egg diameter), preflexion larvae (n= 6, 4.11-6.31 mm in standard length, SL), flexion larvae (n= 4, 6.60-7.82 mm SL), postflexion larvae (n= 3, 8.94-13.46 mm SL), and one juvenile (n= 1, 14.67 mm SL). The mitochondrial (mt) DNA 16S rRNA sequences of the eggs, and the cytochrome c oxidase subunit I (COI) sequences of the larvae were identical to those of A. unoorum adults (genetic distances <0.01). The A. unoorum larvae and the juvenile that we collected were morphologically similar to those of Dactylopsaron dimorphicum, but the A. unoorum specimens were readily distinguishable by the presence of lateral melanophores. This is the first record of A. unoorum in Korean waters. We propose a new Korean name for A. unoorum: "O-ri-bu-ri-nuntung-i".

Genetic Diversity of Hard Ticks (Acari: Ixodidae) in the South and East Regions of Kazakhstan and Northwestern China

  • Yang, Yicheng;Tong, Jin;Ruan, Hongyin;Yang, Meihua;Sang, Chunli;Liu, Gang;Hazihan, Wurelihazi;Xu, Bin;Hornok, Sandor;Rizabek, Kadyken;Gulzhan, Kulmanova;Liu, Zhiqiang;Wang, Yuanzhi
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.103-108
    • /
    • 2021
  • To date, there is no report on the genetic diversity of ticks in these regions. A total of 370 representative ticks from the south and east regions of Kazakhstan (SERK) and Xinjiang Uygur Autonomous Region (XUAR) were selected for molecular comparison. A fragment of the mitochondrial cytochrome c oxidase subunit I (cox1) gene, ranging from 631 bp to 889 bp, was used to analyze genetic diversity among these ticks. Phylogenetic analyses indicated 7 tick species including Hyalomma asiaticum, Hyalomma detritum, Hyalomma anatolicum, Dermacentor marginatus, Rhipicephalus sanguineus, Rhipicephalus turanicus and Haemaphysalis erinacei from the SERK clustered together with conspecific ticks from the XUAR. The network diagram of haplotypes showed that i) Hy. asiaticum from Almaty and Kyzylorda Oblasts together with that from Yuli County of XUAR constituted haplogroup H-2, and the lineage from Chimkent City of South Kazakhstan was newly evolved; and ii) the R. turanicus ticks sampled in Israel, Almaty, South Kazakhstan, Usu City, Ulugqat and Baicheng Counties of XUAR were derivated from an old lineage in Alataw City of XUAR. These findings indicate that: i) Hy. asiaticum, R. turanicus and Ha. erinacei shared genetic similarities between the SERK and XUAR; and ii) Hy. marginatum and D. reticulatus show differences in their evolution.

Taxonomic Review of a Rare Butterfly Ray Gymnura japonica (Gymnuridae, Chondrichthyes), in Korea (한국의 희귀 나비가오리[Gymnura japonica (나비가오리과, 연골어강)]의 분류학적 재검토)

  • Kim, Jin-Koo;Ryu, Jung-Hwa;Jang, Seo-Ha;Han, Kyeong-Ho;Kim, Byeong-Yeob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.30-36
    • /
    • 2022
  • We collected a total of four butterfly ray specimens (Gymnura japonica, 213.4-695.0 mm in total length) in Korea from 2016 to 2021 and investigated their morphological and molecular characteristics in order to clarify their taxonomic status. These features are summarized as follows. Disc lozenge-shaped, 1.8-2.0 times broader than long. Tail very short, post-cloaca length 23.9-28.2% in disc width. Snout short, no rostral cartilage. Clasper short, no hook. Dorsal surface uniform yellow or brownish grey, with or without rounded light yellow spots. An analysis of 434 base-pair sequences of mitochondrial DNA cytochrome c oxidase subunit I showed that all four specimens corresponded to G. japonica from Japan (Kimura-2-parameter distance = 0-0.2%), suggesting that the color patterns found may be due to intraspecific color variation. G. japonica resembles Gymnura poecilura but differs in that it has a shorter tail length to disc width (23.9-28.2% in G. japonica vs. 40.1-48.3% in G. poecilura). This study revealed that G. japonica occurred in areas affected by the Tsushima Warm Current, tentatively suggesting that G. japonica may be an indicator species for monitoring marine ecosystem changes due to climate change.

First Record of the Fivestripe Wrasse, Thalassoma quinquevittatum (Perciformes: Labridae) Based on Postlarval Specimen from the Southern Coastal Waters of Jeju-do Island, Korea (제주도 남부해역에서 채집한 놀래기과(Labridae) 후기자어 Thalassoma quinquevittatum 한국 첫기록)

  • Jae-Kyung Bae;Hwan-Sung Ji;Jin-Koo Kim
    • Korean Journal of Ichthyology
    • /
    • v.34 no.4
    • /
    • pp.225-230
    • /
    • 2022
  • The single postlarval specimen (7.53 mm in standard length) of Thalassoma quinquevittatum (Lay & Bennett, 1839), belongs to the family Labridae, was collected by a bongo net from the southern coastal waters of Jeju-do Island, Korea in November 2020. T. quinquevittatum has a deeply curved dorsal contour before the dorsal fin, the oval eyes, and no melanophores throughout the body. While T. amblycephalum has a slightly curved dorsal contour before the center of the dorsal fin, the circular eyes, and few melanophores on the body. A molecular analysis based on 548 base pairs sequences in the mitochondrial DNA cytochrome c oxidase subunit I region shows that the specimen was closely matched to adult T. quinquevittatum (K2P distance=0.002-0.005). We report the first record of T. quinquevittatum in Korean waters, and suggest its new Korean name "Da-seot-jul-saek-dong-nol-rae-gi".

Species and Hybrid Identification of Genus Coreoleuciscus Species in Hwnag-ji Stream, Nakdong River Basin in Korea (낙동강 상류 황지천에 서식하는 쉬리속(genus Coreoleuciscus) 어류 집단의 종 동정 및 잡종 판별)

  • Song, Ha-Yoon;Kim, Jae-Hun;Seo, In-Young;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • A natural hybrid of interspecific between the Coreoleuciscus splendidus and C. aeruginos (Cypriniformes: Cyprinidae) was captured in the Hwang-ji Stream, a tributary of the Nakdong River basin in Korea. An interspecific hybrid between C. splendidus and C. aeruginos was genetically identified based on morphological characteristics and the sequence analysis of nuclear recombination activating gene 1 (RAG1) gene (1,334 bp) and mitochondrial cytochrome c oxidase subunit 1 (CO1) gene (1,551 bp). As a result of morphological variations, the natural hybrid appeared to have an intermediate character between two parental species (C. splendidus and C. aeruginos) in three variations of black array (s) on dorsal, caudal and anal fin rays. Phylogenetic analysis inferred from RAG1 and CO1 sequence data revealed that Coreoleuciscus populations from Hwang-ji stream consist of two pure Coreoleuciscus species and a hybrid individual group. The individuals were clearly identified the cross and reciprocal hybrid by CO1 gene analysis. In RAG1 gene, 13 nucleotide variation loci were detected and the hybrid individuals displayed the double peaks of sequence chromatograms at the 9 diagnostic positions. In this study, molecular data and morphological variations were clearly demonstrated that hybridization did occur between C. splendidus and C. aeruginos. However, F2 hybrid generation and reproductive capacity of F1 hybrid individuals were not demonstrated.

An assessment of the taxonomic reliability of DNA barcode sequences in publicly available databases

  • Jin, Soyeong;Kim, Kwang Young;Kim, Min-Seok;Park, Chungoo
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.293-301
    • /
    • 2020
  • The applications of DNA barcoding have a wide range of uses, such as in taxonomic studies to help elucidate cryptic species and phylogenetic relationships and analyzing environmental samples for biodiversity monitoring and conservation assessments of species. After obtaining the DNA barcode sequences, sequence similarity-based homology analysis is commonly used. This means that the obtained barcode sequences are compared to the DNA barcode reference databases. This bioinformatic analysis necessarily implies that the overall quantity and quality of the reference databases must be stringently monitored to not have an adverse impact on the accuracy of species identification. With the development of next-generation sequencing techniques, a noticeably large number of DNA barcode sequences have been produced and are stored in online databases, but their degree of validity, accuracy, and reliability have not been extensively investigated. In this study, we investigated the extent to which the amount and types of erroneous barcode sequences were deposited in publicly accessible databases. Over 4.1 million sequences were investigated in three largescale DNA barcode databases (NCBI GenBank, Barcode of Life Data System [BOLD], and Protist Ribosomal Reference database [PR2]) for four major DNA barcodes (cytochrome c oxidase subunit 1 [COI], internal transcribed spacer [ITS], ribulose bisphosphate carboxylase large chain [rbcL], and 18S ribosomal RNA [18S rRNA]); approximately 2% of erroneous barcode sequences were found and their taxonomic distributions were uneven. Consequently, our present findings provide compelling evidence of data quality problems along with insufficient and unreliable annotation of taxonomic data in DNA barcode databases. Therefore, we suggest that if ambiguous taxa are presented during barcoding analysis, further validation with other DNA barcode loci or morphological characters should be mandated.

Identification of Heterodera glycines (Tylenchida; Heteroderidae) Using qPCR

  • Ko, Hyoung-Rai;Kang, Heonil;Park, Eun-Hyoung;Kim, Eun-Hwa;Lee, Jae-Kook
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.654-661
    • /
    • 2019
  • The soybean cyst nematode, Heterodera glycines, is a major plant-parasitic nematode that has caused important economic losses to Korea's soybean production. Four species of cyst nematodes, H. schachtii, H. glycines, H. trifolii, and H. sojae, all belong to schachtii group are coexist in field soil in Korea. The rapid identification of the nematode is crucial for preventing crop damage and in decision making for controlling this nematode. This study aimed to develop a species-specific primer set for quantitative PCR (qPCR) assay of H. glycines. The specific primer set (HGF1 and HGR1) for H. glycines was designed based on the cytochrome c oxidase subunit I (COI) sequence of mitochondrial DNA. After optimization, it is possible to identify the H. glycines using a qPCR assay with DNA extracted from a single cyst and single second-stage juvenile (J2). The specificity was confirmed by the absence of SYBR fluorescent signals of three other Heterodera species. A serial dilution of DNA extracted from a single cyst was obtained for the sensitivity test. The result showed that the standard curve of the test had a highly significant linearity between DNA concentration and Ct value (R2 = 0.996, slope = -3.49) and that the detection limit concentration of DNA of the primer set was 10 pg of DNA per reaction. Our findings suggested that H. glycines could be distinguished from H. sojae and other Heterodera species when a qPCR assay is used with a specific primer set.

New Record of Uraspis uraspis and Redescription of Uraspis helvola (Pisces: Carangidae) from Korea (한국산 전갱이과 어류 1미기록종, Uraspis uraspis 및 Uraspis helvola의 재기재)

  • Yeo, Sooeun;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • The fish species Uraspis helvola and U. uraspis (family Carangidae, Perciformes) were collected from Korea, and described and compared based on morphological and molecular characters. Uraspis helvola and U. uraspis were clearly distinguished by differences in the beginning point of the straight lateral lines scales (dorsal fin soft rays 12th~13th in U. helvola vs. 15th~16th in U. uraspis), and in the naked area on the breast extends to the pectoral fin base (naked area half way in U. helvola vs. naked area widely connected in U. uraspis). Molecular analysis using 530 base-pairs of mitochondrial DNA cytochrome c oxidase subunit I gene strongly supported the morphological identification. We described it as the new Korean record, and proposed the new Korean name "min-jeon-gaeng-i-sok" for the genus Uraspis, and "heuk-gi-min-jeon-gaeng-i" for the species U. uraspis.

Genetic identification of anisakid nematodes isolated from largehead hairtail (Trichiurus japonicus) in Korea

  • Kim, Jeong-Ho;Nam, Woo-Hwa;Jeon, Chan-Hyeok
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.5
    • /
    • pp.26.1-26.8
    • /
    • 2016
  • Background: The nematode species belonging to genus Anisakis occur at their third larval stage in numerous marine teleost fish species worldwide and known to cause accidental human infection through the ingestion of raw or undercooked fish or squids. They may also draw the attention of consumers because of the visual impact of both alive and dead worms. Therefore, the information on their geographical distribution and clear species identification is important for epidemiological survey and further prevention of human infection. Results: For identification of anisakid nematodes species isolated from largehead hairtail (Trichiurus japonicus), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of internal transcribed spacers of ribosomal DNA were conducted. Mitochondrial cytochrome c oxidase subunit 2 gene was also sequenced, and phylogenetic analysis was conducted. From the largehead hairtail (n = 9), 1259 nematodes were isolated in total. Most of the nematodes were found encapsulated throughout the viscera (56.2 %, 708/1259) or moving freely in the body cavity (41.5 %, 523/1259), and only 0.3 % (4/1259) was found in the muscles. By PCR-RFLP, three different nematode species were identified. Anisakis pegreffii was the most dominantly found (98.7 %, 1243/1259) from the largehead hairtail, occupying 98.7 % (699/708) of the nematodes in the mesenteries and 98.1 % (513/523) in the body cavity. Hybrid genotype (Anisakis simplex ${\times}$ A. pegreffii) occupied 0.5 %, and Hysterothylacium sp. occupied 0.2 % of the nematodes isolated in this study. Conclusions: The largehead hairtail may not significantly contribute accidental human infection of anisakid nematode third stage larvae because most of the nematodes were found from the viscera or body cavity, which are not consumed raw. But, a high prevalence of anisakid nematode larvae in the largehead hairtail is still in concern because they may raise food safety problems to consumers. Immediate evisceration or freezing of fish after catch will be necessary before consumption.

Distribution of Eggs and Larvae in Coastal Waters of Korea (우리나라 연안해역 난 및 자치어의 분포특성)

  • Baek, Jeong-Ik;Ji, Hwan-Sung;Yu, Hyo-Jae;Hwang, Kang-Seok;Kim, Doo-Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.467-479
    • /
    • 2021
  • The distribution and abundance of fish eggs and larvae were investigated from February to December 2020 along the coastal waters of Korea. The eggs and larvae were identified using the mitochondrial DNA cytochrome c oxidase subunit I (mtDNA COI) and 16s rRNA gene. During the study period, eggs of overall 45 taxa belonging to 26 families were collected and larvae of overall 39 taxa belonging to 23 families were collected. In Yeongil Bay, eggs of Engraulis japonicus, which accounted for 83.9% of the total population, was the most dominant species, followed by Sardinops sagax (4.0%), Repomucenus valenciennei (3.8%) and E. japonicus larvae, which accounted for 34.9% of the total population. These were followed by Sebastiscus marmoratus (31.0%). In Gomso Bay, E. japonicus eggs accounted for 61.7% of the total population, followed by Sillago japonica (14.0%), Johnius grypotus (8.8%) and Pholis fangi larvae, which accounted for 53.5% of the total population, followed by Ammodytes personatus (34.1%). In Jinhae Bay, E. japonicus eggs accounted for 86.0% of the total population, followed by Leiognathus nuchalis (4.1%), Konosirus punctatus (3.7%) and E. japonicus larvae, which accounted for 48.7% of the total population, followed by Parablennius yatabei (21.6%).