• 제목/요약/키워드: cytochrome P450 2D6

검색결과 53건 처리시간 0.025초

기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상 (Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads)

  • 전민정;유제원;이영미
    • 한국해양생명과학회지
    • /
    • 제8권2호
    • /
    • pp.104-114
    • /
    • 2023
  • 플라스틱은 전세계적으로 사용량이 증가함에 따라 해양 환경으로 유입되는 플라스틱 쓰레기의 양도 꾸준히 증가하고 있으며, 미세플라스틱은 해양 생물에 의해 섭취되어 소화관에 축적됨에 따라 성장과 생식에 유해한 영향을 미친다. Cytochrome P450 (CYP)는 환경 오염물질을 대사하는 해독효소로 알려져 있으나 지각류에서는 그 기능에 대해서는 잘 알려져 있지 않다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis에서 clan 2, 3, 4에 각각 속하는 CYP 유전자 9종(clan 2: CYP370A4, CYP370C5; clan 3: CYP350A1, CYP350C5, CYP361A1; clan 4: CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1)의 서열에 대해 진화적으로 보존된 서열의 유사도를 분석하고 계통분석을 실시하였다. 또한 3종류의 서로 다른 크기의 polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L)에 48시간 노출된 기수산 물벼룩에서 이들 9종의 CYP 유전자의 발현을 real time reverse transcription polymerase chain reaction (RT-PCR)로 분석하였다. 결과적으로 기수산 물벼룩 CYP 유전자는 모두 진화적으로 보존된 motif를 가지고 있으며 계통분석 결과 각각 clan 2, 3, 4에 속하는 것으로 확인되었다. 이는 기능적으로 보존되어 있음을 의미한다. CYP 유전자 중 clan 2에 속하는 CYP370C5와 clan 3에 속하는 CYP360A1, 그리고 clan 4에서는 CYP4C122 유전자의 발현이 0.05-㎛ PS beads에 노출되었을 때 유의하게 증가하는 양상을 보였으며, 이는 이들 유전자가 PS 대사에 관여한다는 것을 의미한다. 본 연구는 미세플라스틱이 해양 무척추 동물에 미치는 생물 영향을 분자적 수준에서 이해하는데 도움이 될 것이다.

Sub-acute toxicity and effect of Hwangryunhaedok-tang on human drug-metabolizing enzymes

  • Jin, Seong Eun;Lee, Mee-Young;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Cho, Jae-Woo;Ha, Hyekyung
    • 대한한의학회지
    • /
    • 제38권2호
    • /
    • pp.15-30
    • /
    • 2017
  • Objectives: Hwangryunhaedok-tang (HHT; Huanglianjiedu-tang, Orengedoku-to), a traditional herbal formula, is used for treating inflammation, hypertension, gastritis, liver dysfunction, cerebrovascular diseases, dermatitis and dementia. The objective of this study was to assess the sub-acute toxicity of HHT in Sprague-Dawley (SD) rats, and its effect on the activities of human microsomal cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs). Methods: Male and female SD rats were orally administered HHT once daily at doses of 0, 500, 1000 and 2000 mg/kg for 4 weeks. We analyzed mortality, clinical observations, body weight, food consumption, organ weights, urinalysis, hematology, serum biochemistry, and histopathology. The activities of major human CYP450s (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were assessed using in vitro fluorescence- and luminescence-based enzyme assays, respectively. Results: No toxicologically significant changes related to the repeated administration of HHT were observed in both male and female SD rats. The no observed adverse effect level (NOAEL) value was more than 2000 mg/kg/day for both sexes. HHT inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2D6, and CYP2E1, whereas it weakly inhibited the activities of CYP2B6, CYP2C9, CYP3A4, and UGT1A1. In addition, HHT negligibly inhibited the activities of human microsomal UGT1A4 and UGT2B7 with $IC_{50}$ values in excess of $1000{\mu}g/mL$. Conclusions: Our findings indicate that HHT may be safe for repeated administration up to 4 weeks. In addition, these findings provide information on the safety and effectiveness of HHT when co-administered with conventional drugs.

수은 노출에 따른 기수산 물벼룩의 대사 관련 유전자의 발현 양상 (Transcriptional Modulation of Metabolism-Related Genes in Brackish Water Flea Diaphanosoma celebensis Exposed to Mercury )

  • 전민정;유제원;이영미
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.145-153
    • /
    • 2022
  • 수은은 생물 축적과 먹이사슬을 통한 생물 농축되며, 미량에서도 유해한 영향을 나타내기 때문에 해양 환경 내에서 중요한 문제가 되고 있다. 그러나 해양 소형 갑각류에 대한 수은의 생물 영향은 다른 금속에 비해 연구가 미흡하다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis을 아치사 농도(0.2, 0.4, 0.8 ㎍/l)의 무기 수은(HgCl2)에 48시간 노출시킨 후, 대사 관련 유전자의 발현 양상을 조사하였다. 해독효소 유전자 5종(cytochrome P450; cyp360A1, cyp361A1, cyp4AP3, cyp4C122, cyp370C5)과 소화효소 6종(alpha amylase (AMY), alpha amylase related protein (AMY-like), trypsin (TRYP), chymotrypsin-like protein (CHY), lipase (LIP), pancreatic lipase-related protein (PLRP))의 유전자 발현을 quantitative real time reverse transcription polymerase chain reaction (qRT-PCR)을 이용하여 분석하였다. Cyp 유전자의 경우 clan2에 속하는 cyp370C5와 clan4에 속하는 cyp4AP3 유전자의 발현이 농도 의존적으로 유의하게 증가하였다. 한편 소화효소 유전자 중에서는 단백질 소화와 관련 있는 TRYP 유전자의 발현이 농도 의존적으로 증가하였다. 이러한 결과는 cyp370C5와 cyp4AP3가 수은 독성을 해독하는 과정에서 중요한 역할을 담당할 것으로 보이며, 수은이 소화효소 유전자의 발현을 조절함으로써 에너지 대사에 영향을 미칠 수 있음을 제시한다. 본 연구는 해양 소형 갑각류에서 수은에 대한 분자 수준의 영향을 이해하는데 도움이 될 것이다.

노화과정(老化過程)의 흰쥐에서 성심산(醒心散)이 심장(心臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響) (A Study on the Effects of Sungshimsan on the Heart Lipid Peroxide and Metabolic Enzyme System in Senescence Induced Rats)

  • 곽중문;오민석;송태원
    • 혜화의학회지
    • /
    • 제8권1호
    • /
    • pp.625-641
    • /
    • 1999
  • Aging occurs as a part of maturation as the time progresses which manifests in the human body causing morphological and functional degeneration, eventually leading to death. This experimental study was conducted to investigate a herbal formula to fortify the heart with easy clinical applications. Sungshimsan was chosen to study its effects in heart lipid peroxide and metabolic enzyme system in senescence induced rats. After pre-treatment of Sungshimsan for 2 weeks at the dosage of A (100mg/kg), B (250mg/kg), C (350mg/kg), and D (500mg/kg), a lipid peroxide and metabolic enzyme system changes of the heart were meaured in 32 weeks old rats. The following results were obtained in this study: 1. The contents of lipid peroxide was significantly reduced in the experimental groups treated with greater than 2 weeks at 250mg/kg. 2. The enzymatic activity of cytochrome P-450, cytochrome b5, and NADPH-cytochrome P450 reductase were significantly decreased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 3. The activity of glutathione and glutathione S-transferase were significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 4. The activity of glutathione reductase and glutathione peroxidase were not influenced compared to the control group. 5. The activity of ${\gamma}$-glutamylcystein synthetase was significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 6. The activity of enzymes detoxificatioon superoxide dismutase and catalase were not influenced compared to the control group. Summarizing above results suggest that the Sungshimsan has profound effects in the heart lipid peroxide, free radicals, and delaying the heart aging process. Further clinical researches and application can be anticipated on the topic of senility and gerontology.

  • PDF

Effects of Silibinin on the Pharmacokinetics of Carvedilol after Oral Administration in Rats

  • Lee, Chong-Ki;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.153-159
    • /
    • 2011
  • This study was designed to investigate the effects of silibinin on the pharmacokinetics of carvedilol after oral administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) with oral silibinin (0.3, 1.5 or 6 mg/kg) and intravenously (1 mg/kg) to rats. The effects of silibinin on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 and CYP2D6 activity were also evaluated. Silibinin inhibited CYP2C9 and CYP2D6 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 5.2 ${\mu}M$ and 85.4 ${\mu}M$, respectively. In addition, silibinin significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group, the area under the plasma concentration-time curve was significantly increased by 36.3-57.1%, and the peak concentration was significantly increased by 51.1-88.5% in the presence of silibinin after oral administration of carvedilol. Consequently, the relative bio-availability of carvedilol was increased by 1.13- to 1.57-fold and the absolute bioavailability was significantly increased by 38.6-59.7%. The time to reach peak concentration and the terminal half-life were not significant. The enhanced oral bio-availability of carvedilol may result from inhibition of CYP2C9-mediated metabolism and P-gp-mediated efflux of carvedilol rather than inhibition of CYP2D6-mediated metabolism in the intestine and/or in the liver by silibinin.

Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구 (Mechanism of Phenoxy Compounds as an Endocrine Disrupter)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • 제18권4호
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Purification and Characterization of the Rat Liver CYP2D1 and Utilization of Reconstituted CYP2D1 in Caffeine Metabolism

  • Chung, Woon-Gye;Cho, Myung-Haing;Cha, Young-Nam
    • Toxicological Research
    • /
    • 제13권1_2호
    • /
    • pp.117-125
    • /
    • 1997
  • In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.

  • PDF

Prediction and visualization of CYP2D6 genotype-based phenotype using clustering algorithms

  • Kim, Eun-Young;Shin, Sang-Goo;Shin, Jae-Gook
    • Translational and Clinical Pharmacology
    • /
    • 제25권3호
    • /
    • pp.147-152
    • /
    • 2017
  • This study focused on the role of cytochrome P450 2D6 (CYP2D6) genotypes to predict phenotypes in the metabolism of dextromethorphan. CYP2D6 genotypes and metabolic ratios (MRs) of dextromethorphan were determined in 201 Koreans. Unsupervised clustering algorithms, hierarchical and k-means clustering analysis, and color visualizations of CYP2D6 activity were performed on a subset of 130 subjects. A total of 23 different genotypes were identified, five of which were observed in one subject. Phenotype classifications were based on the means, medians, and standard deviations of the log MR values for each genotype. Color visualization was used to display the mean and median of each genotype as different color intensities. Cutoff values were determined using receiver operating characteristic curves from the k-means analysis, and the data were validated in the remaining subset of 71 subjects. Using the two highest silhouette values, the selected numbers of clusters were three (the best) and four. The findings from the two clustering algorithms were similar to those of other studies, classifying $^*5/^*5$ as a lowest activity group and genotypes containing duplicated alleles (i.e., $CYP2D6^*1/^*2N$) as a highest activity group. The validation of the k-means clustering results with data from the 71 subjects revealed relatively high concordance rates: 92.8% and 73.9% in three and four clusters, respectively. Additionally, color visualization allowed for rapid interpretation of results. Although the clustering approach to predict CYP2D6 phenotype from CYP2D6 genotype is not fully complete, it provides general information about the genotype to phenotype relationship, including rare genotypes with only one subject.

CJ-11668, a new selective and potent cox-2 inhibitor, has long-acting pharmacokinetic profiles

  • Park, Hyun-Jung;Kang, Hye-Jung;Chung, Young-Mee;Chun, Hyung-Ok;Hong, Kwang-Hee;Kim, Il-Hwan;Kim, Taek-Rho;Noh, Hyun-Jung;Kim, Deog-Yeor
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.88.1-88.1
    • /
    • 2003
  • CJ-11668 is a new potent and selective COX-2 inhibitor (IC$\sub$50/ COX-2 65nM; COX-l/COX-2 ratio 770). The pharmacokinetic profile of CJ-11668 (20 mg/kg, p.o.) in the rat was characterized by high bioavailability (90%) and long plasma half-life (11.7 hr) with low clearance (0.4 L/hr/kg). In the dog, the PK profiles (2 mg/kg, p.o.) also showed long plasma half-life (l7.9hr) with low clearance (0.5 L/hr/kg), and the bioavalability of 60%. The inhibition of CJ-11668 infive different cytochrome P450 isozymes (1A2, 2C9, 2C19, 2D6 and 3A4) was determined in vitro and had observed no significant effect. (omitted)

  • PDF