Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.145

Transcriptional Modulation of Metabolism-Related Genes in Brackish Water Flea Diaphanosoma celebensis Exposed to Mercury  

Min Jeong, Jeon (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Je-Won, Yoo (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Young-Mi, Lee (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 145-153 More about this Journal
Abstract
Mercury (Hg) is a major concern in marine environment because of their bioaccumulation and biomagnification properties, and adverse effects to aquatic organisms at even a trace amount. However, little information on the effects of Hg, compared to other heavy metals, is available in marine small crustaceans. Here, we investigated the transcriptional modulation of metabolism-related genes in the brackish water flea, Diaphanosoma celebensis after exposure to sublethal concentration (0.2, 0.4, 0.8 ㎍/l) of HgCl2 for 48 h. Relative mRNA expression levels of five detoxification enzyme-coding genes (cytochrome P450; cyp360A1, cyp361A1, cyp4AP3, cyp4C122, and cyp370C5) and six digestive enzyme-coding genes [alpha amylase (AMY), alpha amylase related protein (AMY-like), trypsin (TRYP), chymotrypsin-like protein (CHY), lipase (LIP), pancreatic lipase-related protein (PLRP)] were analyzed using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). As results, Hg increased the mRNA level of cyp370C5 (clan2) and cyp4AP3 (clan4) in a concentration dependent manner. A significant increase in TRYP mRNA was also concentration-dependently observed after exposure to Hg. These findings suggest that cyp370C5 and cyp4AP3 play a key role in Hg detoxification in D. celebensis, and Hg can affect energy metabolism by modulating the transcription of digestive enzyme. This study will provide better understanding the molecular effects of Hg in marine small crustacean.
Keywords
Cytochrome P450; Digestive enzyme; Mercury; Gene expression; Water flea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Helvig C, Koener JF, Unnithan GC, Feyereisen R. 2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach Corpora allata. Proc Natl Acad Sci USA 101: 4024-4029.   DOI
2 Henczova M, Deer AK, Filla A, Komlosi V, Mink J. 2008. Effects of Cu2+ and Pb2+ on different fish species: Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra. Comp Biochem Physiol Part - C: Toxicol Pharmacol 148: 53-60.   DOI
3 Huang JN, Wen B, Zhu JG, Zhang YS, Gao JZ, Chen ZZ. 2020. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). Sci Total Environ 733: 138929.
4 Kadiene EU, Ouddane B, Gong HY, Kim MS, Lee JS, Pan YJ, Hwang JS, Souissi S. 2020. Differential gene expression profile of male and female copepods in response to cadmium exposure. Ecotoxicol Environ Saf 204: 111048.
5 Kim DH, Choi BS, Kang HM, Park JC, Kim MS, Hagiwara A, Lee JS. 2021. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. Comp Biochem Physiol Part D Genomics Proteomics 37: 100787.
6 Lee J, Lee YM. 2020. Effects of heavy metals on the expression of digestive enzyme-coding genes in the brackish water flea Diaphanosoma celebensis. Toxicol Environ Health Sci 12: 363-370.   DOI
7 Li JS, Li JL, Wu TT. 2007. The effects of copper, iron and zinc on digestive enzyme activity in the hybrid tilapia Oreochromis niloticus (L.) × Oreochromis aureus (Steindachner). J Fish Biol 71: 1788-1798.
8 Li N, Zhao Y, Yang J. 2008. Effects of Water-Borne Copper on Digestive and Metabolic Enzymes of the Giant Freshwater Prawn Macrobrachium rosenbergii. Arch Environ Contam Toxicol 55: 86-93.   DOI
9 Livak, KJ, Schmittgen TD. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25: 402-408.   DOI
10 Neff JM. 2002. Mercury in the Ocean. Neff JM (ed.), Bioaccumulation in Marine Organisms. Elsevier, pp 103-130.
11 Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14: 1-18.   DOI
12 Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA. 2001. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 26: 225-229.   DOI
13 Sharma A, Sharma A, Arya RK. 2015. Removal of mercury (II) from aqueous solution: a review of recent work. Sep Sci Technol 50: 1310-1320.   DOI
14 Shi Q, Sun N, Kou H, Wang H, Zhao H. 2018. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. Ecotoxicol Environ Saf 164: 500-509.   DOI
15 Soetaert A, Vandenbrouck T, van der Ven K, Maras M, van Remortel P, Blust R, De Coen WM. 2007. Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects. Aquat Toxicol 83: 212-222.
16 Sonawane SM. 2017. Effect of heavy metals on Digestive enzymes protease and invertase of Bivalve L. marginalis. IOSR Journal of Pharmacy 7: 25-31.
17 Tang QQ, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Kuang SY, Tang L, Zhou XQ. 2013. Effects of Dietary Copper on Growth, Digestive, and Brush Border Enzyme Activities and Antioxidant Defense of Hepatopancreas and Intestine for Young Grass Carp (Ctenopharyngodon idella). Biol Trace Elem Res 155: 370-380.   DOI
18 Wang T, Yang C, Zhang T, Liang H, Ma Y, Wu Z, Sun W. 2021. Immune defense, detoxification, and metabolic changes in juvenile Eriocheir sinensis exposed to acute ammonia. Aquat Toxicol 240: 105989.
19 Tariang K, Ramanujam SN, Das B. 2019. Effect of arsenic (As) and lead (Pb) on glycogen content and on the activities of selected enzymes involved in carbohydrate metabolism in freshwater catfish, Heteropneustes fossilis. Int Aquat Res 11: 253-266.   DOI
20 Wang T, Long X, Cheng Y, Liu Z, Yan S. 2015. A Comparison Effect of Copper Nanoparticles versus Copper Sulphate on Juvenile Epinephelus coioides: Growth Parameters, Digestive Enzymes, Body Composition, and Histology as Biomarkers. Int J Genomics 2015: 1-10.
21 Watling L, Thiel M. 2013. Feeding and digestive system. Watling L (ed.), Functional morphology and diversity. Oxford University Press, Oxford, pp 237-260.
22 Wu D, Liu Z, Cai M, Jiao Y, Li Y, Chen Q, Zhao Y. 2019. Molecular characterisation of cytochrome P450 enzymes in waterflea (Daphnia pulex) and their expression regulation by polystyrene nanoplastics. Aquatic Toxicology 217: 105350.
23 Wu H, Xuan R, Li Y, Zhang X, Wang Q, Wang L. 2012. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense. Environ Sci Pollut Res Int 20: 4085-4092.
24 Xie D, Li Y, Liu Z, Chen Q. 2019a. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol Part - C: Toxicol Pharmacol 222: 65-73.   DOI
25 Xie Z, Luan H, Zhang Y, Wang M, Cao D, Yang J, Tang J, Fan S, We X, Hua R. 2019b. Interactive effects of diclofenac and copper on bioconcentration and multiple biomarkers in crucian carp (Carassius auratus). Chemosphere 242: 125141.   DOI
26 Zhang J, He Y, Yan X, Qu C, Li J, Zhao S, Wang X, Guo B, Liu H, Qi P. 2019. Two novel CYP3A isoforms in marine mussel Mytilus coruscus: identification and response to cadmium and benzo[a]pyrene. Aquat Toxicol 214: 105239.
27 Yan T, Teo LH, Sin YM. 1996. Effects of metals on α-amylase activity in the digestive gland of the green mussel, Perna viridis L. Bull Environ Contam Toxicol 56: 677-682.   DOI
28 Yang J, Liu D, Jing W, Dahms HU, Wang L. 2013. Effects of Cadmium on Lipid Storage and Metabolism in the Freshwater Crab Sinopotamon henanense. PLoS ONE 8: e77569.
29 Yoo JW, Bae HJ, Jeon MJ, Jong TY, Lee YM. 2022. Metabolomic analysis of combined exposure to microplastics and methylmercury in the brackish water flea Diaphanosoma celebensis. Environ Geochm Health. 10.1007/s10653-022-01435-1.   DOI
30 Yoo JW, Jeon MJ, Lee KW, Jung JH, Jeong CB, Lee YM. 2022. The single and combined effects of mercury and polystyrene plastic beads on antioxidant-related systems in the brackish water flea: toxicological interaction depending on mercury species and plastic bead size. Aquat Toxiol 252: 106325.
31 Zhang L, Gan J, Ke C, Liu X, Zhao J, You L, Yu J, Wu H. 2012. Identification and expression profile of a new cytochrome P450 isoform (CYP414A1) in the hepatopancreas of Venerupis (Ruditapes) philippinarum exposed to benzo[a]pyrene, cadmium and copper. Environ Toxicol Pharmacol 33: 85-91.   DOI
32 Zhang L, Zhou Y, Song Z, Liang H, Zhong S, Yu Y, Liu T, Sha H, He L, Gan, J. 2022. Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants 11: 1944.
33 Zhao Y, Wang X, Qin Y, Zheng B. 2010. Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chin J Oceanol Limnol 28: 427-434.   DOI
34 Zheng N, Wang S, Dong W, Hua X, Li Y, Song X, Chu Q, Hou S, Li Y. 2019. The Toxicological Effects of Mercury Exposure in Marine Fish. Bull Environ Contam Toxicol 102: 714-720.   DOI
35 Bai Z, Wang N, Wang M. 2021. Effects of microplastics on marine copepods. Ecotoxicol Environ Saf 217: 112243.
36 Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. 2022. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab (Eriocheir sinensis). Antioxidants 11: 2029.
37 Baldwin WS, Marko PB, Nelson DR. 2009. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genom 10: 169.
38 Dai W, Du H, Fu L, Jin C, Xu Z, Liu H. 2008. Effects of Dietary Pb on Accumulation, Histopathology, and Digestive Enzyme Activities in the Digestive System of Tilapia (Oreochromis niloticus). Biol Trace Elem Res 127: 124-131.   DOI
39 De Coen W, Janssen C. 1997. The use of biomarkers in Daphnia magna toxicity testing II. Digestive enzyme activity in Daphnia magna exposed to sublethal concentrations of cadmium, chromium and mercury. Chemosphere 35: 1053-1067.   DOI
40 Gworek B, Bemowska-Kalabun O, Kijenska M, Wrzosek-Jakubowska J. 2016. Mercury in Marine and Oceanic Waters-a Review. Water Air Soil Pollut 227: 371.
41 Hardwick JP. 2008. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem Pharmacol 75: 2263-2275.   DOI
42 Han J, Lee KW. 2021. Identification and response of cytochrome P450 genes in the brackish water flea Diaphanosoma celebensis after exposure to benzo[α]pyrene and heavy metals. Mol Biol Rep 48: 657-664.   DOI
43 Hani YMI, Turies C, Palluel O, Delahaut L, Gaillet V, Bado-Nilles A, Porcher JM, Geffard A, Dedourge-Geffard O. 2018. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. Aquat Toxicol 199: 252-262.   DOI