• Title/Summary/Keyword: cytochrome $c_3$

Search Result 735, Processing Time 0.026 seconds

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.

Effect of Captafol on the Serum Parameter and Drug Metabolizing Enzyme in Rats (Captafol이 혈액상(血液像) 및 약물대사효소(藥物代謝酵素)에 미치는 영향(影響))

  • Park, Kui-Lea;Hong, Sa-Uk
    • YAKHAK HOEJI
    • /
    • v.33 no.1
    • /
    • pp.54-63
    • /
    • 1989
  • Examination of the subacute toxicity of captafol showed that. 1) In the captafol administered group, the body weight was significantly decreased but the amounts of AST, ALT, LDH, BUN, TG in serum were remarkably elevated in comparision to those of the control group. 2) In captafol treated animals, the amount of cytochrome P-450 and the activity of NADPH-cytochrome c reductase in liver and in kidney were decreased, but TAB value in serum and in liver and total ATPase activity in liver and in kideny were found to be remakably elevated. 3) When captafol administered with ethanol to the group, the group showed elevated serum levels of AST, ALT and BUN but the amount of cytochrome P-450 and the activity of NADPH-cytochrome c reductase in liver and in kidney were decreased as the group which was treated with captafol only.

  • PDF

in Vitro Metabolism Study of ${\alpha}$-Endosulfan with Microsomal Cytochrome P-450 Monooxygenase (생쥐에서 Cytochrome P-450 효소계에 의한 ${\alpha}$-Endosulfan의 시험관내 대사시험)

  • Kim, In-Seon;Lee, Kang-Bong;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.463-467
    • /
    • 1995
  • In vitro metabolism study of ${\alpha}$-endosulfan by liver and kidney microsomal cytochrome P-450 monooxygenase system of the mouse(Balb/C) was performed. ${\alpha}$-Endosulfan was metabolized to endosulfan lactone(EL), endosulfan hydroxyether(EHE), endosulfan alcohol(EA), endosulfan sulfate(ES), endosulfan ether(EE) and ${\beta}$-endosulfan(${\beta}$-E). The main metabolites of ${\alpha}$-endosulfan were EL(13.2%) and EA(11.5%) in liver microsome and EA(17.4%) md EHE(19.3%) in kidney microsome. The $^{14}C$-activity of organic extractable fraction and water soluble fraction were 63.4% and 31.7% in liver micosome incubates respectively. The water soluble metabolites were EA(83.9%), EHE(4.5%) and ES(2.3). Piperonyl butoxide treatment inhibited the formation of EE by 86%, EA by 92% and EHE, EL and ES were barely formed.

  • PDF

Two species of Tortanus (Eutortanus) (Copepoda: Calanoida: Tortanidae) new to Korea

  • Lim, Byung-Jin;Min, Gi-Sik
    • Journal of Species Research
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Two species of Tortanus (Eutortanus) are newly recorded from shallow Korean waters: T. (E.) vermiculus Shen, 1955 and T. (E.) komachi Itoh, Ohtsuka and Sato, 2001. As a result of this study, five species are reported in the subgenus of the family Tortanidae in Korea. The sequence of cytochrome c oxidase subunit 1 (CO1) is also provided as a molecular characteristic.

Ectopic expression of Bcl-2 or Bcl-xL suppresses p-fluorophenylalanine-induced apoptosis through blocking mitochondria-dependent caspase cascade in human Jurkat T cells (Jurkat T 세포에 있어서 ρ-fluorophenylalanine에 의해 유도되는 세포자살의 Bcl-2 및 Bcl-xL에 의한 저해 기전)

  • Han, Kyu-Hyun;Oh, Hyun-Ji;Jun, Do-Youn;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2003
  • $\rho$-Fluorophenylalanine (FPA), a phenylalanine analog, is able to induce apoptotic cell death of human acute leukemia Jurkat T cells. To better understand the mechanism by which FPA induces apoptotic cell death, the effect of ectopic expression of antiapoptotic proteins, Bcl-2 and Bcl-xL, on FPA-induced apoptosis was investigated by employing lurkat T cells transfected with Bcl-2 gene (JT/Bcl-2) or Bcl-xL gene (1/Bcl-xL) and Jurkat T cells transfected with vector (JT/Neo or J/Neo). When Jurkat T cells, JT/Neo or J/Neo, were exposed to FPA at concentrations ranging from 0.63 to 5.0 mM, the cell viability determined by MTT assay declined in a dose-dependent manner. In addition, apoptotic DNA fragmentation along with several apoptotic events such as caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, and degradation of PARP was induced. However, the FPA-induced cytotoxic effect, activation of caspase-8, and cleavage of Bid were significantly abrogated by ectopic expression of Bcl-2 or Bcl-xL. At the same time, there was marked reduction in the level of cytochrome c release from mitorhondria, caspase-9 activation, caspase-3 activation, and degradation of PARP. These results indicate that caspase-8 activation, Bid cleavage, and mitochondrial cytochrome c release with subsequent activation of the caspase cascade are negatively regulated by Bcl-2 or Bcl-xL, and are thus required for FPA-induced apoptosis in Jurkat T cells

Comparison of Characteristics of Hepatic Microsomal Cytochrome P45O-dependent Monooxygenases from Snake and Rat (꽃뱀과 흰쥐의 간 마이크로좀에 존재하는 Cytochrome P45O 의존성 Monooxygenases의 특성 비교)

  • Ja Young Moon;Dong Wook Lee;Ki Hyun Park
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.695-701
    • /
    • 1998
  • This study was carried out to investigate levels of the components of microsomal mixed function oxidase (MFO) system and activities of the hepatic microsomal cytochrome P45O (P45O)-dependent monooxygenases of grass snake (Natrix tigrina Lateralis) and to compare with those of rat. The levels of P45O and cytochrome b$_{5}$, (b$_{5}$) of snake were much lower than those in rat. NADPH-cytochrome c reductase activity in the snake was also only 40% of that in the rat. Activities of 7-ethoxycoumarin 0-deethylase (ECOD) and benzphetamine N-demethylase (BPDM) of snake hepatic microsomes, when compared with those of rat, were markedly low. But, aryl hydrocarbon hydroxylase (AHH) and testosterone hydroxylase (TSH) activities were nearly the same or higher than those of the rat. Of the P45O-dependent TSHs measured, 7$\alpha$-hydroxylase activity was the highest in snake, whereas, 6$\beta$-hydroxylase activity was the highest in rat. However, stereoselectivity of the enzyme from the snake to C2 and C6 positions of testoste-rone was the same as rat. The result of radioimmunoassay (RIA) for the identification of five P45O isozymes with MAbs shows that relatively high content of ethanol-inducible P45O isozyme, CYP2El, exists in the rat, whereas MC-inducible P45O isozyme, CYP2A1/1A2, does in the snake. From the analyses of SDS-PAGE and RIA of partially pu-rified P45O, we suggest the possibility of the presence of a certain P45O isozyme(s) in hepatic microsomes of snake different from those of rat.

  • PDF

The Effects of Treadmill Exercise on Cognitive Performance, Brain Mitochondrial Aβ-42, Cytochrome c, SOD-1, 2 and Sirt-3 Protein Expression in Mutant (N141I) Presenilin-2 Transgenic Mice of Alzheimer's Disease (트레드밀 운동이 mutant (N141I) presenilin-2 유전자를 이식한 알츠하이머질환 모델 생쥐 뇌의 Aβ-42, cytochrome c, SOD-1, 2와 Sirt-3 단백질 발현에 미치는 영향)

  • Koo, Jung-Hoon;Eum, Hyun-Sub;Kang, Eun-Bum;Kwon, In-Su;Yeom, Dong-Cheol;An, Gil-Young;Oh, Yoo-Sung;Baik, Young-Soo;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.444-452
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise on $A{\beta}$-42, cytochrome c, SOD-1, 2 and Sirt-3 protein expressions in brain cytosol and mitochondria in mutant (N141I) presenilin-2 transgenic mice with Alzheimer's disease (AD). The mice were divided into four groups (Non-Tg-sedentary, n=5; Non-Tg treadmill exercise, n=5; Tg-sedentary, n=5; Tg treadmill exercise, n=5). To evaluate the neuroprotective effect of treadmill exercise, Non-Tg and Tg mice were subjected to exercise training on a treadmill for 12 wk, after which their brain cytosol and mitochondria were evaluated to determine whether any changes in the cognitive performance, $A{\beta}$-42 protein, cytochrome c protein, anti-oxidant enzymes (SOD-1, SOD-2) and Sirt-3 protein had occurred. The results indicated that treadmill exercise resulted in amelioration in cognitive deficits of Tg mice. In addition, the expressions of mitochondrial $A{\beta}$-42 and cytosolic cytochrome c protein were decreased in the brains of Tg mice after treadmill exercise, whereas antioxidant enzymes, SOD-l and SOD-2 were significantly increased in response to treadmill exercise. Furthermore, treadmill exercise significantly increased the expression of Sirt-3 protein in Non-Tg and Tg mice. Taken together, these results suggest that treadmill exercise is a simple behavioral intervention which can sufficiently improve cognitive performance and inhibit $A{\beta}$-induced oxidative stress in AD.

ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells

  • Gao, Yue;Wu, Jia-Yan;Zeng, Fan;Liu, Ge-Li;Zhang, Han-Tao;Yun, Hong;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3293-3299
    • /
    • 2015
  • Background: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. Materials and Methods: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. Results: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. Conclusions: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.