• Title/Summary/Keyword: cysteine metabolism

Search Result 65, Processing Time 0.029 seconds

Induction of Lipin1 by ROS-Dependent SREBP-2 Activation

  • Seo, Kyuhwa;Shin, Sang Mi
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • Lipin1 was identified as a phosphatidate phosphatase enzyme, and it plays a key role in lipid metabolism. Since free radicals contribute to metabolic diseases in the liver, this study investigated the effects of free radicals on the regulation of Lipin1 expression in Huh7 and AML12 cells. Hydrogen peroxide induced mRNA and protein expression of Lipin1 in Huh7 cells, which was assayed by quantitative RT-PCR and immunoblotting, respectively. Induction of Lipin1 by hydrogen peroxide was confirmed in AML12 cells. Hydrogen peroxide treatment significantly increased expression of sterol regulatory element-binding protein (SREBP)-2, but not SREBP-1. Moreover, nuclear translocation of SREBP-2 was detected after hydrogen peroxide treatment. Hydrogen peroxide-induced Lipin1 or SREBP-2 expression was significantly reduced by N-acetyl-$\small{L}$-cysteine treatment, indicating that reactive oxygen species (ROS) were implicated in Lipin1 expression. Next, we investigated whether the hypoxic environments that cause endogenous ROS production in mitochondria in metabolic diseases affect the expression of Lipin1. Exposure to hypoxia also increased Lipin1 expression. In contrast, pretreatment with antioxidants attenuated hypoxia-induced Lipin1 expression. Collectively, our results show that ROS activate SREBP-2, which induces Lipin1 expression.

Effects of Oxidative Stress on the Expression of Aldose Reductase in Vascular Smooth Muscle Cells

  • Kim, Hyo-Jung;Chang, Ki-Churl;Seo, Han-Geuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.271-278
    • /
    • 2001
  • Oxidative stress and methylglyoxal (MG), a reactive dicarbonyl metabolites produced by enzymatic and non-enzymatic reaction of normal metabolism, induced aldose reductase (AR) expression in rat aortic smooth muscle cells (SMC). AR expression was induced in a time-dependent manner and reached at a maximum of 4.5-fold in 12 h of MG treatment. This effect of MG was completely abolished by cyclohemide and actinomycin D treatment suggesting AR was synthesized by de novo pathway. Pretreatment of the SMC with N-acetyl-L-cysteine significantly down-regulated the MG-induced AR mRNA. Furthermore, DL-Buthionine-(S,R)-sulfoximine, a reagent which depletes intracellular glutathione levels, increased the levels of MG-induced AR mRNA. These results indicated that MG induces AR mRNA by increasing the intracellular peroxide levels. Aminoguanidine, a scanvenger of dicarbonyl, significantly down-regulated the MG-induced AR mRNA. In addition, the inhibition of AR activities with statil, an AR inhibitor, enhanced the cytotoxic effect of MG on SMC under normal glucose, suggesting a protective role of AR against MG-induced cell damages. These results imply that the induction of AR by MG may contribute to an important cellular detoxification of reactive aldehyde compounds generated under oxidative stress in extrahepatic tissues.

  • PDF

Redox Regulation of Apoptosis before and after Cytochrome C Release

  • Chen, Quan;Crosby, Meredith;Almasan, Alex
    • Animal cells and systems
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine pretenses (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.

Free Amino Acids of Xylem-Pith in Panax ginseng Root. (인삼근동체중심부의 유리아미노산)

  • Lee, Mee-Kyoung;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.32-38
    • /
    • 1987
  • Composition of free amino acids (FAA) in the central part (xylem plus piths,of tap root in P. ginseng was investigated in velation to stem status at harvest. The sum of FAA tended to be higher with dead stem than with healthy one but both were not significantly different. The sum of FAA (3.6-4.9% dried weight) was much less than total FAA, suggesting that water soluble nonprotein fraction contained large quantity of ninhydrih positive components except FAA. Pattern of amino acid composition between both stem status was not different. Ten of all 17 amino acids showed increasing tendency with dead stem and two, glutamic acid and cysteine, decreasing. Major FAA were arginine (relative content 58%), glycine (8.2), lysine (5.9), serine (5.7), glutamic acid (4.2) and aspartic acid (3.5). Above facts strongly suggest that the inside white of red ginseng did not closely related with FAA and that early defoliation or stem death did not decrease FAA. The content of arginine was heighest in all cases reported indicating the important role of nitrogen metabolism. Pattern of PAA composition except arginine was not different in present samples but greatly different with other cases reported mainly due to alanine, phenylalanine, glycine and proline.

  • PDF

Direct Conversion of L-Selenomethionine into Methylselenol by Human Cystathionine ${\gamma}$-Lyase (인간 Cystathionine ${\gamma}$-Lyase에 의한 Selenomethionine의 Methylselenol로의 직접분해)

  • Cho, Hyun-Nam;Jhee, Kwang-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • Selenium is an essential trace element for mammals, but it is very toxic. Therefore, the control of selenium concentrations should be precisely and effectively monitored. Selenium is naturally obtained through foods and seleno-L-methionine (LSeMet) is a major form of selenium. It has been reported that L-SeMet is only converted into Se-adenosyl-L-SeMet. However, a recent study suggested that L-SeMet was directly metabolized into methylselenol ($CH_3SeH$) in mouse liver extract by the reaction of cystathionine ${\gamma}$-lyase (CGL). The canonical reaction of CGL was known to catalyze the cleavage of L-cystathionine to L-cysteine, ${\alpha}$-ketobutyrate and $NH_3$. In the present study, we found that L-SeMet could be directly converted to $CH_3SeH$ using purified homogenous human CGL instead of mouse liver cytosol. Authentic $CH_3SeH$ was prepared by reduction of dimethyldiselenide with sodium tetrahydroborate. The gaseous product of the enzymatic reaction with L-SeMet was analyzed by GC/MS spectrometry. The GC/MS data was identical to that of authentic dinitrophenyl selenoether. We also analyzed the kinetic parameters for the formation of $CH_3SeH$ from L-SeMet by human and mouse CGL. These results suggest that human CGL is a critical enzyme which is responsible for L-SeMet metabolism.

General Characteristics of Taurine: A Review (타우린의 일반적 특성에 관한 선행연구 고찰)

  • Yoon, Jin A;Choi, Kyung-Soon;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.404-414
    • /
    • 2015
  • Taurine is one of the most abundant free ${\beta}$-amino acids in the human body that accounts for 0.1% of the human body weight. It has a sulfonic acid group in place of the more common carboxylic acid group. Mollusks and meat are the major dietary source of taurine, and mother's milks also include high levels of this amino acid. The leukocytes, heart, muscle, retina, kidney, bone, and brain contain more taurine than other organs. Furthermore, taurine can be synthesized in the brain and liver from cysteine. There are no side effects of excessive taurine intake in humans; however, in case of taurine deficiency, retinal abnormalities, reduced plasma taurine concentration, and other abnormalities may occur. Taurine enters the cell via a cell membrane receptor. It is excreted in the urine (approximately 95%) and feces (approximately 5%). Taurine has a number of features and functions, including conjugation with bile acid, reduction of blood cholesterol and triglyceride levels, promotion of neuron cell differentiation and growth, antioxidant effects, maintenance of cell membrane stability, retinal development, energy generation, depressant effects, regulation of calcium level, muscle contraction and relaxation, bone formation, anti-inflammatory effects, anti-cancer and anti-atherogenic effects, and osmotic pressure control. However, the properties, functions, and effects of taurine require further studies in future.

Purification and Reaction Mechanism of Rat Brain Succinic Semialdehyde Dehydrogenase

  • Kim, Kyu-Tae;Joo, Chung-No
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 1995
  • Rat brain succinic semialdehyde dehydrogenase (EC 1.2.1.24 SSADH) activity was detected in mitochondrial, cytosolic and microsomal fractions. Brain mitochondrial soluble SSADH was purified by ammonium sulfate precipitation, DEAE Sephacel, and 5'-AMP Sepharose 4B affinity chromatography. The purified enzyme was shown to consist of four identical subunits, and the molecular weight of a subunit was 55 kD. The $K_m$ for short chain aliphatic aldehydes and aromatic aldehydes were at the $10^{-3}M$ level but that for succinic semialdehyde was 2.2 ${\mu}M$. Either $NAD^+$ or $NADP^+$ can be used as a cofactor but the affinity for $NAD^+$ was 10 times higher than that for $NADP^+$. The brain cytosolic SSADH was also purified by ammonium sulfate precipitation, DEAE Sephacel, Blue Sepharose CL-6B and 5'-AMP Sepharose 4B affinity chromatography and its Km for short chain aliphatic aldehydes was at the $10^{-3}$ level but that for succinic semialdehyde was 3.3 ${\mu}M$. $NAD^+$ can be used as a cofactor for this enzyme. We suppose that both enzyme might participate in the oxidation of succinic semialdehyde, which is produced during GABA metabolism. The activity of both cytosolic and mitochondrial SSADH was markedly inhibited when the concentration of succinic semialdehyde was high. The reciprocal plot pattern of product inhibition and initial velocity indicated a sequential ordered mechanism for mitochondrial matrix SSADH. Chemical modification data suggested that amino acid residues such as cysteine, serine and lysine might participate in the SSADH reaction.

  • PDF

Modulation of Presynaptic GABA Release by Oxidative Stress in Mechanically-isolated Rat Cerebral Cortical Neurons

  • Hahm, Eu-Teum;Seo, Jung-Woo;Hur, Jin-Young;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Reactive oxygen species (ROS), which include hydrogen peroxide ($H_2O_2$), the superoxide anion (${O_2}^-{\cdot}$), and the hydroxyl radical ($OH{\cdot}$), are generated as by-products of oxidative metabolism in cells. The cerebral cortex has been found to be particularly vulnerable to production of ROS associated with conditions such as ischemia-reperfusion, Parkinson's disease, and aging. To investigate the effect of ROS on inhibitory GABAergic synaptic transmission, we examined the electrophysiological mechanisms of the modulatory effect of $H_2O_2$ on GABAergic miniature inhibitory postsynaptic current (mIPSCs) in mechanically isolated rat cerebral cortical neurons retaining intact synaptic boutons. The membrane potential was voltage-clamped at -60 mV and mIPSCs were recorded and analyzed. Superfusion of 1-mM $H_2O_2$ gradually potentiated mIPSCs. This potentiating effect of $H_2O_2$ was blocked by the pretreatment with either 10,000-unit/mL catalase or $300-{\mu}M$ N-acetyl-cysteine. The potentiating effect of $H_2O_2$ was occluded by an adenylate cyclase activator, forskolin, and was blocked by a protein kinase A inhibitor, N -(2-[p-bromocinnamylamino] ethyl)-5-isoquinolinesulfonamide hydrochloride. This study indicates that oxidative stress may potentiate presynaptic GABA release through the mechanism of cAMP-dependent protein kinase A (PKA)-dependent pathways, which may result in the inhibition of the cerebral cortex neuronal activity.

Inactive extracellular superoxide dismutase disrupts secretion and function of active extracellular superoxide dismutase

  • Jeon, Byeong-Wook;Kim, Byung-Hak;Lee, Yun-Sang;Kim, Sung-Sub;Yoon, Jong-Bok;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects cells and tissues from extracellular damage by eliminating superoxide anion radicals produced during metabolism. Two different forms of EC-SOD exist, and their different enzyme activities are a result of different disulfide bond patterns. Although only two folding variants have been discovered so far, five folding variants are theoretically possible. Therefore, we constructed five different mutant EC-SOD expression vectors by substituting cysteine residues with serine residues and evaluated their expression levels and enzyme activities. The mutant EC-SODs were expressed at lower levels than that of wild-type EC-SOD, and all of the mutants exhibited inhibited extracellular secretion, except for C195S ECSOD. Finally, we demonstrated that co-expression of wild-type EC-SOD and any one of the mutant EC-SODs resulted in reduced secretion of wild-type EC-SOD. We speculate that mutant EC-SOD causes malfunctions in systems such as antioxidant systems and sensitizes tissues to ROS-mediated diseases.

Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle

  • Yan, XiangMin;Wang, Jia;Li, Hongbo;Gao, Liang;Geng, Juan;Ma, Zhen;Liu, Jianming;Zhang, Jinshan;Xie, Penggui;Chen, Lei
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1439-1450
    • /
    • 2021
  • Objective: With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods: Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results: In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion: Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.