References
- Almeida A, Almeida J, Bolanos JP, and Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294-15299 https://doi.org/10.1073/pnas.261560998
- Antonsson B, Montessuit S, Lauper S, Eskes R, and Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345 Pt 2: 271-278 https://doi.org/10.1042/0264-6021:3450271
- Armstrong JS and Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. Faseb J 16: 1263-1265 https://doi.org/10.1096/fj.02-0097fje
- Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, and Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9: 252-263 https://doi.org/10.1038/sj.cdd.4400959
- Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, et al. (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26: 435-439 https://doi.org/10.1038/82565
- Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420-430 https://doi.org/10.1038/nrc821
- Baker A, Payne CM, Briehl MM, and Powis G (1997) Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res 57: 5162-5167
- Baker A, Santos BD, and Powis G (2000) Redox control of caspase-3 activity by thioredoxin and other reduced oroteins. Biochem Biophys Res Commun 268: 78-81 https://doi.org/10.1006/bbrc.1999.1908
- Basanez G, Zhang J, Chau BN, Maksaev Gl, Frolov VA, Brandt TA, Burch J, Hardwick JM, and Zimmerberg J (2001) Pro- apoptotic cleavage products of Bcl-xL form cytochrome c- conducting pores in pure lipid membranes. J Biol Chem 276: 31083-31091 https://doi.org/10.1074/jbc.M103879200
- Bauer J, Wekerle H, and Lassmann H (1995) Apoptosis in brain-specific autoimmune disease. Curr Opin Immunol 7: 339-843 https://doi.org/10.1016/0952-7915(95)80057-3
- Beere HM and Green DR (2001) Stress management, heat shock protein 70 and the regulation of apoptosis. Trends Cell Biol 11: 6-10 https://doi.org/10.1016/S0962-8924(00)01874-2
- Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto Rl, Cohen GM, and Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469-475 https://doi.org/10.1038/35019501
- Beltran B, Mathur A, Duchen MR, Erusalimsky JD, and Moncada S (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602-14607 https://doi.org/10.1073/pnas.97.26.14602
- Beltran B, Quintero M, Garcia-Zaragoza E, O'Connor E, Esplugues JV, and Moncada S (2002) Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc Natl Acad Sci USA 99: 8892-8897 https://doi.org/10.1073/pnas.092259799
- Bossy-Wetzel E and Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274: 17484-17490 https://doi.org/10.1074/jbc.274.25.17484
- Boveris A and Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134: 707-716 https://doi.org/10.1042/bj1340707
- Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504: 46-57 https://doi.org/10.1016/S0005-2728(00)00238-3
- Brown GC and Borutaite V (1999) Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66: 17-25
- Brown GC and Borutaite V (2001) Nitric oxide, mitochondria, and cell death. IUBMB Life 52: 189-195 https://doi.org/10.1080/15216540152845993
- Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, and Mattson MP (1999) Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol 93: 53-71 https://doi.org/10.1016/S0165-5728(98)00190-8
- Cadenas E and Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29: 222-230 https://doi.org/10.1016/S0891-5849(00)00317-8
- Cai J, Yang J, and Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366: 139-149 https://doi.org/10.1016/S0005-2728(98)00109-1
- Carmody RJ and Cotter TG (2001) Signalling apoptosis: a radical approach. Redox Rep 6: 77-90 https://doi.org/10.1179/135100001101536085
- Casteilla L, Rigoulet M, and Penicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52: 181-188 https://doi.org/10.1080/15216540152845984
- Chen Q, Chai Y-C, Mazumder S, Jiang C, Macklis RM, Chisolm GM, and Almasan A (2003) The late increase in free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Diff 10: 1-12 https://doi.org/10.1038/sj.cdd.4401148
- Chen Q, Gong B, and Almasan A (2000) Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 7: 227-233 https://doi.org/10.1038/sj.cdd.4400629
- Chen Q, Gong B, Mahmoud-Ahmed A, Zhou A, Hsi ED, Hussein M, and Almasan A (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon- induced apoptosis in multiple myeloma. Blood 98: 2183-2192 https://doi.org/10.1182/blood.V98.7.2183
- Chen C, Takeyama N, Brady G, Watson AJM, and Dive C (1998) Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenicity given appropriate signals to suppress apoptosis. Blood 92: 4545-4553
- Cheng EHY, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, and Hardwick JM (1997) Conversion of Bcl-2 to a Bax-liks death effector by caspases. Science 278: 1966-1968 https://doi.org/10.1126/science.278.5345.1966
- Concannon CG, Orrenius S, and Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9: 195-201 https://doi.org/10.3727/000000001783992605
- Cory S and Adams JM (2002) The Bcl2 family: regulators of the cellula life-or-death switch. Nat Rev Cancer 2: 647-656 https://doi.org/10.1038/nrc883
- Curtin JF, Donovan M, and Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265: 49-72 https://doi.org/10.1016/S0022-1759(02)00070-4
- Du C, Fang M, Li Y, Li L, and Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42 https://doi.org/10.1016/S0092-8674(00)00008-8
- Echtay KS, Murphy MP, Smith RA, Talbot DA, and Brand MD (2002a) Superoxide activates mitochondrial uncoupling protein 2 frorr the matrix side. Studies using targeted antioxidants. J Biol Chem 277: 47129-47135 https://doi.org/10.1074/jbc.M208262200
- Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, et al. (2002b) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96-99 https://doi.org/10.1038/415096a
- Fadeel B, Hassan Z, Hellstrom-Lindberg E, Henter Jl, Orrenius S, and Zhivotovsky B (1999a) Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia 13: 719-728 https://doi.org/10.1038/sj/leu/2401411
- Fadeel B, Orrenius S, and Zhivotovsky B (1999b) Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266: 699-717 https://doi.org/10.1006/bbrc.1999.1888
- Fleury C, Pampin M, Tarze A, and Mignotte B (2002) Yeast as a model to study apoptosis? Biosci Rep 22: 59-79 https://doi.org/10.1023/A:1016013123094
- Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, and Orlandini SZ (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182: 41-49 https://doi.org/10.1002/(SICI)1097-4652(200001)182:1%3C41::AID-JCP5%3E3.0.CO;2-7
- Frohlich KU and Madeo F (2000) Apoptosis in yeast: a monocellular organism exhibits altruistic behaviour. FEBS Lett 473: 6-9 https://doi.org/10.1016/S0014-5793(00)01474-5
- Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, and Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 13: 2061-2070 https://doi.org/10.1096/fasebj.13.14.2061
- Garrido C, Gurbuxani S, Ravagnan L, and Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death Biochem Biophys Res Commun 286: 433-442 https://doi.org/10.1006/bbrc.2001.5427
- Goldstein JC, Waterhouse NJ, Juin P, Evan Gl, and Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapic, complete and kinetically invariant. Nat Cell Biol 2:156-162 https://doi.org/10.1038/35004029
- Green D and Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267- 271 https://doi.org/10.1016/S0962-8924(98)01273-2
- Green DR and Evan Gl (2002) A matter of life and death. Cancer Cell 1: 19-30 https://doi.org/10.1016/S1535-6108(02)00024-7
- Greenhalf W, Stephan C, and Chaudhuri B (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 380: 169-175 https://doi.org/10.1016/0014-5793(96)00044-0
- Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, and Forte M (2000) Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 20: 3125-3136 https://doi.org/10.1128/MCB.20.9.3125-3136.2000
- Hampton MB, Zhivotovsky B, Slater AF, Burgess DH, and Orrenius S (1998) Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem J 329: 95-99 https://doi.org/10.1042/bj3290095
- Hancock JT, Desikan R, and Neill SJ (2001) Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death? Free Radio Biol Med 31: 697-703 https://doi.org/10.1016/S0891-5849(01)00646-3
- Harris MH and Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7: 1182-1191 https://doi.org/10.1038/sj.cdd.4400781
- Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J, and Marrack PC (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10: 735-744 https://doi.org/10.1016/S1074-7613(00)80072-2
- Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, and Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94: 3633-3638 https://doi.org/10.1073/pnas.94.8.3633
- Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, and Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251 https://doi.org/10.1016/0092-8674(93)80066-N
- Hsu YT and Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272: 13829-13834 https://doi.org/10.1074/jbc.272.21.13829
- Hu J, Ma X, Lindner DJ, Karra S, Hofmann ER, Reddy SP, and Kalvakolanu DV (2001) Modulation of p53 dependent gene expression and cell death through thioredoxin-thioredoxin reductase by the interferon-retinoid combination. Oncogene 20: 4235-4248 https://doi.org/10.1038/sj.onc.1204585
- Jaattela M, Wissing D, Kokholm K, Kallunki T, and Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124-6134 https://doi.org/10.1093/emboj/17.21.6124
- Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, et al. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554 https://doi.org/10.1038/35069004;Received1
- Kirkland RA and Franklin JL (2001) Evidence for redox regulation of cytochrome c release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21: 1949-1963
- Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, and Hardwick JM (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274: 21155-21161 https://doi.org/10.1074/jbc.274.30.21155
- Kokoszka JE, Coskun P, Esposito LA, and Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98: 2278-2283 https://doi.org/10.1073/pnas.051627098
- Korshunov SS, Krasnikov BF, Pereverzev MO, and Skulachev VP (1999) The antioxidant functions of cytochrome c. FEBS Lett 462: 192-198 https://doi.org/10.1016/S0014-5793(99)01525-2
- Kroemer G, Zamzami N, and Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18: 44-51 https://doi.org/10.1016/S0167-5699(97)80014-X
- Li CY, Lee JS, Ko YG, Kim Jl, and Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275: 25665-25671 https://doi.org/10.1074/jbc.M906383199
- Li LY, Luo X, and Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95-99 https://doi.org/10.1038/35083620
- Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, and Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489 https://doi.org/10.1016/S0092-8674(00)80434-1
- Liu H, Nishitoh H, Ichijo H, and Kyriakis JM (2000) Activation of apoptosis signalregulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20: 2198-2208 https://doi.org/10.1128/MCB.20.6.2198-2208.2000
- Liu X, Kim CN, Yang J, Jemmerson R, and Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-157 https://doi.org/10.1016/S0092-8674(00)80085-9
- Lockshin RA and Zakeri Z (2002) Caspase-independent cell deaths. Curr Opin Cell Biol 14: 727-733 https://doi.org/10.1016/S0955-0674(02)00383-6
- Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, and Prehn JH (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20: 5715-5723
- Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, and Kroemer G (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158: 4612-4619
- Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, Wissing S, and Frohlich KU (2002a) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41: 208-216 https://doi.org/10.1007/s00294-002-0310-2
- Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, and Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145: 757-767 https://doi.org/10.1083/jcb.145.4.757
- Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, and Frohlich KU (2002b) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911-917 https://doi.org/10.1016/S1097-2765(02)00501-4
- Madesh M and Hajnoczky G (2001) VDAC-dependent per-meabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155: 1003-1015 https://doi.org/10.1083/jcb.200105057
- Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, and Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284: 651-654 https://doi.org/10.1126/science.284.5414.651
- Martin SJ and Green DR (1994) Apoptosis as a goal of cancer therapy. Curr Opin Oncol 6: 616-621 https://doi.org/10.1097/00001622-199411000-00015
- Martincu I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, and Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883-889 https://doi.org/10.1083/jcb.144.5.883
- Martinou JC, Desagher S, and Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2: E41-43 https://doi.org/10.1038/35004069
- Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, and Kroemer G (1998a) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027-2031 https://doi.org/10.1126/science.281.5385.2027
- Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N, Zamzami N, and Kroemer G (1998b) Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427: 198-202 https://doi.org/10.1016/S0014-5793(98)00424-4
- Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, and Nagata S (2000) Necrotic death pathway in Fas receptor signaling. J Cell Biol 151: 1247-1256 https://doi.org/10.1083/jcb.151.6.1247
- Matsuyama S, Nouraini S, and Reed JC (1999) Yeast as a tool for apoptosis research. Curr Opin Microbiol 2: 618-623 https://doi.org/10.1016/S1369-5274(99)00031-4
- Nardai G, Sass B, Eber J, Orosz G, and Csermely P (2000) Reactive cysteines of the 90-kDa heat shock protein, Hsp90. Arch Biochem Biophys 384: 59-67 https://doi.org/10.1006/abbi.2000.2075
- Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati, C, Bracale R, Valerio A, Francolini M, Moncada S, and Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896-899 https://doi.org/10.1126/science.1079368
- Orrenius S (1995) Apoptosis: molecular mechanisms and implications for human disease. J Internatl Med 237: 529-536 https://doi.org/10.1111/j.1365-2796.1995.tb00881.x
- Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, and Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99: 1259-1263 https://doi.org/10.1073/pnas.241655498
- Parsell DA and Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496 https://doi.org/10.1146/annurev.ge.27.120193.002253
- Powis G, Kirkpatrick DL, Angulo M, and Baker A (1998) Thioredoxin redox control of cell growth and death and the effects of inhibitors. Chem Biol Interact 111-112: 23-34 https://doi.org/10.1146/annurev.ge.27.120193.002253
- Reed JC (1999) Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 11: 68-75 https://doi.org/10.1097/00001622-199901000-00014
- Ricci JE, Gottlieb RA, and Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160: 65-75 https://doi.org/10.1083/jcb.200208089
- Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, and Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274: 6823-6826 https://doi.org/10.1074/jbc.274.11.6823
- Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, and Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596-2606 https://doi.org/10.1093/emboj/17.9.2596
- Saleh A, Srinivasula SM, Balkir L, Robbins PD, and Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476-483 https://doi.org/10.1038/35019510
- Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, and Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152: 237-250 https://doi.org/10.1083/jcb.152.2.237
- Shimizu S, Narita M, and Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487 https://doi.org/10.1038/20959
- Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, and Vayssiere JL (1998) TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17: 1639-1651 https://doi.org/10.1038/sj.onc.1202094
- Simpkins CO, Fogarty KW, 2nd, and Nhamburo P (1993) Reduction of cytochrome C by fragments of heat shock protein 70. Life Sci 52: 1487-1492 https://doi.org/10.1016/0024-3205(93)90110-O
- Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275-280 https://doi.org/10.1016/S0014-5793(98)00061-1
- Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, and Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82-83: 149-153 https://doi.org/10.1016/0378-4274(95)03474-9
- Slee EA, Keogh SA, and Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7: 556-565 https://doi.org/10.1038/sj.cdd.4400689
- Sugawara T, Lewen A, Gasche Y, Yu F, and Chan PH (2002) Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. Faseb J 16: 1997-1999
- Swerdlow RH, Parks JK, Miller SW, Turtle JB, Trimmer PA, Sheehan JP, Bennett, JP, Jr., Davis RE, and Parke- WD, Jr. (1996) Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 40: 663-671 https://doi.org/10.1002/ana.410400417
- Tatton WG and Chalmers-Redman RM (1998) Mitochondria in neurodegenerative apoptosis: an opportunity for therapy? Ann Neurol 44: S134-141 https://doi.org/10.1002/ana.410440122
- Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462 https://doi.org/10.1126/science.7878464
- Tsujimoto Y and Shimizu S (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84: 187- 193 https://doi.org/10.1016/S0300-9084(02)01370-6
- Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J (2002) Redox control of cell death. Antioxid Redox Signa' 4: 405-414 https://doi.org/10.1089/15230860260196209
- Ueda S, Nakamura H, Masutani H, Sasada T, Yonehara S, Takabayashi A, Yamaoka Y, and Yodoi J (1998) Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol 161: 6689-6695
- Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, and Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031-1044 https://doi.org/10.1016/S1097-2765(02)00520-8
- Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, and Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627-637 https://doi.org/10.1016/S0092-8674(00)80450-X
- Vander Heiden MG and Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1: 209-216 https://doi.org/10.1038/70237
- Voehringer DW (1999) BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med 27: 945-950 https://doi.org/10.1016/S0891-5849(99)00174-4
- Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, Herzenberg LA, and Steinman L (2000) Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci USA 97: 2680-2685 https://doi.org/10.1073/pnas.97.6.2680
- Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, and Meyn RE (1998) Bcl-2 expression causes redistribution of glutath one to the nucleus. Proc Natl Acad Sci USA 95: 2956- 2960 https://doi.org/10.1073/pnas.95.6.2956
- Voehringer DW and Meyn RE (2000) Redox aspects of Bcl-2 function. Antioxid Redox Signal 2: 537-550 https://doi.org/10.1089/15230860050192314
- Wang X (2001) The expanding role of mitochondria in apoptosis. Genes & Dev 15: 2922-2933
- Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, and Green DR (2001a) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153: 319-328 https://doi.org/10.1083/jcb.153.2.319
- Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, and Green DR (2001 b) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153: 319-328 https://doi.org/10.1083/jcb.153.2.319
- Waterhouse NJ, Ricci JE, and Green DR (2002) And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 84: 113-121 https://doi.org/10.1016/S0300-9084(02)01379-2
- Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, and Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes & Dev 14: 2060-2071
- Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, and Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730 https://doi.org/10.1126/science.1059108
- Weis M, Schlegel J, Kass GE, Holmstrom TH, Peters I, Eriksson J, Orrenius S, and Chow SC (1995) Cellular events in Fas/ APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 219: 699-708 https://doi.org/10.1006/excr.1995.1281
- Widlak P, Li LY, Wang X, and Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276: 48404-48409 https://doi.org/10.1074/jbc.M108461200
- Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, and Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281-1292 https://doi.org/10.1083/jcb.139.5.1281
- Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, and Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408: 1008-1012 https://doi.org/10.1038/35050012
- Xia T, Jiang C, Li L, Wu C, Chen Q, and Liu SS (2002) A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro. FEBS Lett 510: 62-66 https://doi.org/10.1016/S0014-5793(01)03228-8
- FEBS Lett v.510 A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro Xia T;Jiang C;Li L;Wu C;Chen Q;Liu SS https://doi.org/10.1016/S0014-5793(01)03228-8