• Title/Summary/Keyword: cysteine effect

Search Result 329, Processing Time 0.043 seconds

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF

FACTORS AFFECTING THE PRODUCTION OF SULFUR COMPOUNDS BY FUSOBACTERIUM NUCLEATUM (Fusobacterium nucleatum의 유황화합물 생성에 영향을 미치는 인자)

  • Oh, In-Gyun;Park, Eun-Hae;Oh, Jong-Suk;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Fusobacterium nucleatum, one of the bacteria causing halitosis, produces the volatile sulfur compounds (VSC) such as $H_2S$ in the media containing sulfur components, and forms FeS by binding with iron component. The various factors of oral cavity affect the concentration of sulfur compounds produced by Fusobacterium nucleatum. In this study, the effect of nutrients and pH on the production of sulfur compounds by Fusobacterium nucleatum was studied with the following results. 1. The optical density of broth was increased to $0.817{\pm}0.032$ and $1.297{\pm}0.024$ by adding 1.0% sodium thiosulfate and 0.05% L-cysteine hydrochloride in the media, respectively. 2. Though the optical density of broth was $0.799{\pm}0.032$ by adding volatile sulfur compounds (VSC) only in the media, it was increased to $1.775{\pm}0.003$ and $1.648{\pm}0.022$ by adding xylitol combined with glucose and fructose, respectively. 3. The concentration of VSC was above 20,000 ppb in the media above pH 5.5. The optical density of broth was still high in the media with L-cysteine hydrochloride of higher concentration, being low in the media of lower pH. 4. The concentration of VSC was high when there was distilled water or saline solution on the media, and their amount was small. These results suggest that the production of sulfur compounds by Fusobacterium nucleatum was inhibited by xylitol and acid.

  • PDF

Effects on Mammalian Tissues and Cells by Sulfur Containing Compounds (황함유 화합물이 동물의 조직과 세포에 미치는 영향)

  • 이기섭;이정채;나상록;정희영;임계택
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • To know the stress response and antioxidative effect of sulfur containing compounds, we observed the expression of the stress protein (heat shock protein; inducible protein) from mouse tissues and evaluated the protective effects to hydroxyl radical in mouse brain cell culture. Cysteine, methionine or sodium sulfide was fed by oral administration of 1 ml/per 6hr/three times with 1 mM, 2mM or 3mM to mouse, respectively. After that, the stress proteins were extracted from mouse tissues and analyzed the features of expression. The stress proteins by sulfur containing compounds were showed different aspects in the kinds and concentrations of their compounds, and in the tissues of mouse. In the liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in the spleen were evaluated from 32KDa to 50KDA, and the induced times were relatively late at high concentration of cysteine, early at low concentration of methionine or sodium sulfide. The stress proteins in mouse muscle were detected mostly between 24hr after treatment of sulfur containing compounds. Their molecular weights were 15~24KDa. In the antioxidative effects of sulfur containing compounds to hydroxyl radical, cell viabilities were measured by 63.2% at 10 $\mu\textrm{M}$, 65.5% at 50 $\mu\textrm{M}$, 68.6% at 100 $\mu\textrm{M}$, 78.3% at 150 $\mu\textrm{M}$, or 83.0% at 200 $\mu\textrm{M}$ of cysteine, respectively. At addition of methionine, the cell viabilities were assessed as 58.1% at 10 $\mu\textrm{M}$, 62.8% at 50 $\mu\textrm{M}$, 75.7% at 100 $\mu\textrm{M}$, 78.6% at 150 $\mu\textrm{M}$, and 79.2% at 200 $\mu\textrm{M}$ after 4hrs exposure with 20mU/ml glucose oxidase (GO) system, while the numbers of live cells to hydroxyl radicals in treatment of sodium sulfide were showed 48.6% at 10 $\mu\textrm{M}$, 54.8% at 100 $\mu\textrm{M}$, 51.8% at 150 $\mu\textrm{M}$, and 51.6% at 200 $\mu\textrm{M}$ in the neuronal cells. In the inhibitory effects on the proliferation of tumor cells, percentages of dead cells of the CT-26 or HeLa cell were generally less than 30% even 48hr after addition of sulfur containing compounds. Conclusively, the results of these experiments indicate that stress protein by sulfur containing compounds can be used as physiological indicator for animal nutrition and for environment, and also that cysteine and methionine can play critical roles as an antioxidant.

  • PDF

Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation (Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.

Phototoxic Potential Mechanism of Pefloxacin Irradiated by UVB (UVB 조사에 의한 페플록사신의 광독성 유발 기전)

  • 최윤수;이경선
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.703-708
    • /
    • 1999
  • The effect of antioxidants on photochemical reaction of pefloxacin by UVB (290~320 nm) was investigated and the possible mechanism of phototoxicity on the skin was also studied. The photo-degradation of pefloxacin by UVB was suppressed by cysteine, reduced glutathione and ascorbic acid, but was promoted by ${\alpha}-tocopherol$. Squalene, accounts for more than 10% of skin surface lipids, was peroxidized by pefloxacin through both radical and singlet oxygen mechanism.

  • PDF

Effect of uterine histotroph on embryo development in pigs

  • Han, Hye-In;Lee, Sang-Hee;Song, Eun-Ji;Lee, Seunghyung;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.199-205
    • /
    • 2016
  • The aim of this study was to investigate the effect of uterine histotroph on embryo development and the expression of cysteine-rich protein 2 (CRP2), coatomer subunit gamma-2 (G2COP), myoglobin (MYG), vascular endothelial growth factor D (VEGFD), collagen alpha 4 chain (COL4) and galactoside 3-L-fucosyltransferase 4 (FUT4) proteins in porcine embryo during pre-implantation. Uterine histotroph (UH) was collected from uterine horn on corpus albican phase, and embryos were cultured in porcine zygote medium with UH for 168 hours. Cleavage and blastocyst formation of embryo were detected at 168 hours after in vitro fertilization. And CRP2, G2COP, MYG, VEGFD, COL4 and FUT4 proteins were observed using confocal laser microscope. In results, embryo cleavage rate was not significantly changed by UH, but blastocyst rate was significantly (P<0.05) decreased in UH-treated embryos. Moreover, CRP2, G2COP, MYG, VEGFD, COL4 and FUT4 proteins were expressed in blastomere. CRP2 in embryo was significantly overexpressed (P<0.05), but not G2COP, MYG, VEGFD, COL4 and FUT4 proteins. In summary, UH on corpus albican phase was increased CRP2 protein in embryo, and inhibited blastocyst formation in preimplantation porcine embryos, suggesting that CRP2 may play an interrupter on embryo development in pigs.

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.