• Title/Summary/Keyword: cylindrical volume

Search Result 309, Processing Time 0.02 seconds

Numerical Analysis of Nonlinear Acoustic Characteristics in Axisymmetric Resonant Tubes for Sonic Compressors (음향 압축기 설계를 위한 축대칭 공명튜브 내부음장의 수치해석 및 특성연구)

  • 전영두;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1009-1014
    • /
    • 2001
  • A numerical investigation on nonlinear oscillations of gas in an axisymmetric resonant tube is presented. When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, axisymmetric 2-D nonlinear governing equations have been derived and solved numerically. Numerical simulations were accomplished for cylindrical, conical, and 1/2 cosine-shape tubes, which have same volume and length. For conical and 1/2 cosine-shape tubes, very large variation of pressures can be induced without shock formation except the cylindrical tube. In addition, the results well agree to those of 1-D simple model analysis.

  • PDF

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Development of Zonal-Embedded-Grid Method for a Polar Coordinate System and Application to the Spin-up Flow within a Semi-Circular Cylinder

  • SUH Yong Kweon;YEO Chang-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.81-90
    • /
    • 2004
  • A zonal embedded grid technique has been developed for computation of the two-dimensional Navier-Stokes equations with cylindrical coordinates. The fundamental idea of the zonal embedded grid technique is that the number of azimuthal grids can be made small near the origin of the coordinates so that the grid size is more uniformly distributed over the domain than with the conventional regular-grid system. The code developed using this technique combined with the explicit, finite-volume method was then applied to calculation of the spin-up flows within a semi-circular cylinder. It was shown that the numerical results were in good agreement with the experimental results both qualitatively and quantitatively.

  • PDF

Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure

  • Ghamkhar, Madiha;Harbaoui, Imene;Hussain, Muzamal;Ayed, Hamdi;Khadimallah, Mohamed A.;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.337-344
    • /
    • 2022
  • In this work, the vibrational frequency of two layered FGM cylindrical shell with and without the effects of internal pressure under ring support are discussed in detailed. The functionally graded materials of a cylindrical shell are designed for specific purpose and studied under various boundary conditions. The Love shell dynamical equations theory is utilized to find the relationship between the curvature displacement and strain displacement. Natural frequency vibrations are analyzed by using volume polynomial for bi-layered FGM shell under ring support both for with and without internal pressures.

Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

A Study on the Electrical Properties of Transformer Oils for Large Power (대용량 변압기유의 전기적특성에 관한 연구)

  • 이용우;김왕곤;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1996
  • In order to investigate the electrical properties of transformer oils for large power, the characteristics of AC and Impulse breakdown in gap length of 1.0~2.5mm and that of volume resistivity were researched in temperature range of 20~$100^{\circ}C$. An geometrical capacitance of electrode with coaxial cylindrical shape for measuring the volume resistivity was 16pF, and highmegohm meter with model no. VMG-1000 was used, and also the applied voltage were DC 100, 250 and 500V. In the dependance of breakdown characteristics due to electrode gap length, it was confirmed that breakdown voltage was nearly uniform by volume effect according to the increase of gap. In the characteristics for AC breakdown, the dielectric strength was increased to $90^{\circ}C$ but decreased over $90^{\circ}C$, and also in case of impulse breakdown, it was increased to 7$0^{\circ}C$ and at dated $70^{\circ}C$ over in temperature range. The calculated mobility of oils in the characteristics for impulse breakdown were about $10^{-5}$~$10^{-4}cm^2/V{\cdot}S$, and the value of volume resistivity was almost invariable in low temperature range, regardless of voltage by the stable thermal properties, and it indicated a peak at $50^{\circ}C$ and had a sudden change to decrease over that temperature, and also the value of volume resistivity in 250V/mm at $80^{\circ}C$ is suitable for the International electrical standards, it was confirmed.

  • PDF

A Study on the dose distribution produced by $^{32}$ P source form in treatment for inhibiting restenosis of coronary artery (관상동맥 재협착 방지를 위한 치료에서 $^{32}$ P 핵종의 선원 형태에 따른 선량분포에 관한 연구)

  • 김경화;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the dose distributions of a $^{32}$ p uniform cylindrical volume source and a surface source, a pure $\beta$emitter, were calculated in order to obtain information relevant to the utilization of a balloon catheter and a radioactive stent. The dose distributions of $^{32}$ p were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly in the volume and on the surface in the form of a cylinder with a radius of 1.5 mm and length of 20 mm. The energy of $\beta$particles emitted is chosen at random in the $\beta$ energy spectrum evaluated by the solution of the Dirac equation for the Coulomb potential. Liquid water is used to simulate the particle transport in the human body. The dose rates in a target at a 0.5mm radial distance from the surface of cylindrical volume and surface source are 12.133 cGy/s per GBq (0.449 cGy/s per mCi, uncertainty: 1.51%) and 24.732 cGy/s per GBq (0.915 cGy/s per mCi, uncertainty: 1.01%), respectively. The dose rates in the two sources decrease with distance in both radial and axial direction. On the basis of the above results, the determined initial activities were 29.69 mCi and 1.2278 $\mu$Ci for the balloon catheter and the radioactive stent using $^{32}$ P isotope, respectively. The total absorbed dose for optimal therapeutic regimen is considered to be 20 Gy and the treatment time in the case of the balloon catheter is less than 3 min. Absorbed doses in targets placed in a radial direction for the two sources were also calculated when it expressed initial activity in a 1 mCi/ml volume activity density for the cylindrical volume source and a 0.1 mCi/cm$^2$ area activity density for the surface source. The absorbed dose distribution around the $^{32}$ P cylindrical source with different size can be easily calculated using our results when the volume activity density and area activity density for the source are known.

  • PDF

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Electrical Properties of Transformer Oils (III) (변압기유의 전기적인 특성 (III))

  • 이용우;조돈찬;신성권;이재호;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.293-297
    • /
    • 1995
  • In order to investigate the electrical properties of Transformer Oils, Volume Resistivity for transformer oils was made researches. in this paper, the specimen was produced by irradiation of electron beam, which is divided by the dose, 12[Mrad], 24[Mrad], 36[Mrad]. By investigating the electrical properties of dielectric liquid due to the difference of electron beam irradiation the effect of electron beam irradiation was studied. To measure the physcial properties of transformer Oils, Fourier transfer infrared spectroscopy was investigated. And the study for the electrical properties of dielectric liquid was made by measuring volume resistivity of specimen. the Electrode for the measuring Volume resistivity is formed coaxial cylindrical shape, and its geometric capacitance is confirmed to 16[pF]. In this experiments, Highmegohm meter which is model VMG-1000, was used for the measuring volume resistivity. the applying voltages were DC 100, 250, 500, 1000[V] in the temperature range of 20∼120[$^{\circ}C$]. By means of the result from this experiment the movement of carrier and the physcial constants to contribute dielectric properties is introduced.

  • PDF