• 제목/요약/키워드: cylindrical surface

검색결과 769건 처리시간 0.022초

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

Shell forms for egg-shaped concrete sludge digesters: A comparative study on structural efficiency

  • Zingoni, A.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.321-336
    • /
    • 2005
  • The structural feasibility of a variety of non-conventional sludge digesters, in the form of thin shells of revolution constructed in concrete, has formed the subject of investigation of a recent programme of research at the University of Cape Town. Such forms are usually known in the literature as "egg-shaped", and the advantages of these over conventional digesters of the wide-cylindrical type are now well-recognised: superior mixing efficiency, less accumulation of deposits at the bottom, easier removal of bottom deposits and surface crust, reduced heat losses, and so forth. With the aim of exploring the structural feasibility of various non-conventional forms for concrete sludge digesters, and making available usable analytical data and practical guidelines for the design of such thin shell structures, a number of theoretical studies have recently been undertaken, and these have covered conical assemblies, spherical assemblies and parabolic ogival configurations. The purpose of the present paper is to bring together the different analytical approaches employed in each of these studies, summarise the main findings in each case, draw comparisons among the various studied configurations with regard to structural efficiency and functional suitability, and make appropriate conclusions and recommendations.

곡가공 프로세스를 고려한 곡판 분류 알고리즘 (An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process)

  • 노재규;신종계
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

Design of Dynamically Focus-switchable Fresnel Zone Plates Based on Plasmonic Phase-change VO2 Metafilm Absorbers

  • Kyuho Kim;Changhyun Kim;Sun-Je Kim;Byoungho Lee
    • Current Optics and Photonics
    • /
    • 제7권3호
    • /
    • pp.254-262
    • /
    • 2023
  • Novel thermo-optically focus-switchable Fresnel zone plates based on phase-change metafilms are designed and analyzed at a visible wavelength (660 nm). By virtue of the large thermo-optic response of vanadium dioxide (VO2) thin film, a phase-change material, four different plasmonic phase-change absorbers are numerically designed as actively tunable Gires-Tournois Al-VO2 metafilms in two and three dimensions. The designed phase-change metafilm unit cells are used as the building blocks of actively focus-switchable Fresnel zone plates with strong focus switching contrast (40%, 83%) and high numerical apertures (1.52, 1.70). The Fresnel zone plates designed in two and three dimensions work as cylindrical and spherical lenses in reflection type, respectively. The coupling between the thermo-optic effect of VO2 and localized plasmonic resonances in the Al nanostructures offer a large degree of freedom in design and high-contrast focus-switching performance based on largely tunable absorption resonances. The proposed method may have great potential in photothermal and electrothermal active optical devices for nonlinear optics, microscopy, 3D scanning, optical trapping, and holographic displays over a wide spectral range including the visible and infrared regimes.

A VISION SYSTEM IN ROBOTIC WELDING

  • Absi Alfaro, S. C.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.314-319
    • /
    • 2002
  • The Automation and Control Group at the University of Brasilia is developing an automatic welding station based on an industrial robot and a controllable welding machine. Several techniques were applied in order to improve the quality of the welding joints. This paper deals with the implementation of a laser-based computer vision system to guide the robotic manipulator during the welding process. Currently the robot is taught to follow a prescribed trajectory which is recorded a repeated over and over relying on the repeatability specification from the robot manufacturer. The objective of the computer vision system is monitoring the actual trajectory followed by the welding torch and to evaluate deviations from the desired trajectory. The position errors then being transfer to a control algorithm in order to actuate the robotic manipulator and cancel the trajectory errors. The computer vision systems consists of a CCD camera attached to the welding torch, a laser emitting diode circuit, a PC computer-based frame grabber card, and a computer vision algorithm. The laser circuit establishes a sharp luminous reference line which images are captured through the video camera. The raw image data is then digitized and stored in the frame grabber card for further processing using specifically written algorithms. These image-processing algorithms give the actual welding path, the relative position between the pieces and the required corrections. Two case studies are considered: the first is the joining of two flat metal pieces; and the second is concerned with joining a cylindrical-shape piece to a flat surface. An implementation of this computer vision system using parallel computer processing is being studied.

  • PDF

상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구 (Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material)

  • 윤재형;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.