DOI QR코드

DOI QR Code

Design of Dynamically Focus-switchable Fresnel Zone Plates Based on Plasmonic Phase-change VO2 Metafilm Absorbers

  • Kyuho Kim (Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University) ;
  • Changhyun Kim (Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University) ;
  • Sun-Je Kim (Department of Physics, Myongji University) ;
  • Byoungho Lee (Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University)
  • Received : 2023.03.06
  • Accepted : 2023.05.29
  • Published : 2023.06.25

Abstract

Novel thermo-optically focus-switchable Fresnel zone plates based on phase-change metafilms are designed and analyzed at a visible wavelength (660 nm). By virtue of the large thermo-optic response of vanadium dioxide (VO2) thin film, a phase-change material, four different plasmonic phase-change absorbers are numerically designed as actively tunable Gires-Tournois Al-VO2 metafilms in two and three dimensions. The designed phase-change metafilm unit cells are used as the building blocks of actively focus-switchable Fresnel zone plates with strong focus switching contrast (40%, 83%) and high numerical apertures (1.52, 1.70). The Fresnel zone plates designed in two and three dimensions work as cylindrical and spherical lenses in reflection type, respectively. The coupling between the thermo-optic effect of VO2 and localized plasmonic resonances in the Al nanostructures offer a large degree of freedom in design and high-contrast focus-switching performance based on largely tunable absorption resonances. The proposed method may have great potential in photothermal and electrothermal active optical devices for nonlinear optics, microscopy, 3D scanning, optical trapping, and holographic displays over a wide spectral range including the visible and infrared regimes.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1062368). This work was also supported by the 2022 Research Fund of Myongji University.

References

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011). https://doi.org/10.1126/science.1210713
  2. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
  3. Y. Kivshar and A. Miroshnichenko, "Meta-optics with Mie resonances," Opt. Photonics News 28, 24-31 (2017). https://doi.org/10.1364/OPN.28.1.000024
  4. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Phys. Rev. Lett. 118, 113901 (2017).
  5. A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, "Spatiotemporal light control with active metasurfaces," Science 364, eaat3100 (2019).
  6. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Lett. 12, 1702-1706 (2012). https://doi.org/10.1021/nl300204s
  7. M. Khorasaninejad and F. Capasso, "Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters," Nano Lett. 15, 6709-6715 (2015). https://doi.org/10.1021/acs.nanolett.5b02524
  8. Y. Ra'di, D. L. Sounas, and A. Alu, "Metagratings: Beyond the limits of graded metasurfaces for wave front control," Phys. Rev. Lett. 119, 067404 (2017).
  9. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, "Largeangle, multifunctional metagratings based on freeform multimode geometries," Nano Lett. 17, 3752-3757 (2017). https://doi.org/10.1021/acs.nanolett.7b01082
  10. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, "Free-form diffractive metagrating design based on generative adversarial networks," ACS Nano 13, 8872-8878 (2019). https://doi.org/10.1021/acsnano.9b02371
  11. S.-J. Kim, "Broadband phase-change metagrating design for efficient active reflection steering," Curr. Opt. Photon. 5, 134-140 (2021).
  12. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016). https://doi.org/10.1126/science.aaf6644
  13. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-insensitive metalenses at visible wavelengths," Nano Lett. 16, 7229-7234 (2016). https://doi.org/10.1021/acs.nanolett.6b03626
  14. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nat. Commun. 7, 13682 (2016).
  15. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nat. Nanotechnol. 10, 937-943 (2015). https://doi.org/10.1038/nnano.2015.186
  16. S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics 7, 1041-1068 (2018). https://doi.org/10.1515/nanoph-2017-0129
  17. S.-J. Kim, C. Kim, Y. Kim, J. Jeong, S. Choi, W. Han, J. Kim, and B. Lee, "Dielectric metalens: Properties and three-dimensional imaging applications," Sensors 21, 4584 (2021).
  18. C. Kim, S.-J. Kim, and B. Lee, "Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations," Opt. Express 28, 18059-18076 (2020). https://doi.org/10.1364/OE.387794
  19. G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, "Metasurface eyepiece for augmented reality," Nat. Commun. 9, 4562 (2018).
  20. Y. Kim, G.-Y. Lee, J. Sung, J. Jang, and B. Lee, "Spiral metalens for phase contrast imaging," Adv. Funct. Mater. 32, 2106050 (2022).
  21. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007). https://doi.org/10.1126/science.1150124
  22. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, "Frequency tunable near-infrared metamaterials based on VO2 phase transition," Opt. Express 17, 18330-18339 (2009). https://doi.org/10.1364/OE.17.018330
  23. M. M. Qazilbash, A. A. Schafgans, K. S. Burch, S. J. Yun, B. G. Chae, B. J. Kim, H. T. Kim, and D. N. Basov, "Electrodynamics of the vanadium oxides VO2 and V2O3," Phys. Rev. B 77, 115121 (2008).
  24. J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, "Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide," Opt. Lett. 40, 4408-4411 (2015). https://doi.org/10.1364/OL.40.004408
  25. Y. Kim, P. C. Wu, R. Sokhoyan, K. Mauser, R. Glaudell, G. K. Shirmanesh, and H. A. Atwater, "Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces," Nano Lett. 19, 3961-3968 (2019). https://doi.org/10.1021/acs.nanolett.9b01246
  26. S.-J. Kim, H. Yun, K. Park, J. Hong, J.-G. Yun, K. Lee, J. Kim, S. J. Jeong, S.-E. Mun, J. Sung, Y. W. Lee, and B. Lee, "Active directional switching of surface plasmon polaritons using a phase transition material," Sci. Rep. 7, 43723 (2017).
  27. S.-J. Kim, S. Choi, C. Choi, Y. Lee, J. Sung, H. Yun, J. Jeong, S.-E. Mun, Y. W. Lee, and B. Lee, "Broadband efficient modulation of light transmission with high contrast using reconfigurable VO2 diffraction grating," Opt. Express 26, 34641-34654 (2018). https://doi.org/10.1364/OE.26.034641
  28. S.-J. Kim, I. Kim, S. Choi, H. Yoon, C. Kim, Y. Lee, J. Son, Y. W. Lee, J. Rho, and B. Lee, "Reconfigurable all-dielectric Fano metasurfaces for strong intensity modulations of visible light," Nanoscale Horiz. 5, 1088-1095 (2020). https://doi.org/10.1039/D0NH00139B
  29. S.-J. Kim, H. Yun, S. Choi, J.-G. Yun, K. Park, S. J. Jeong, S.-Y. Lee, Y. Lee, J. Sung, C. Choi, J. Hong, Y. W. Lee, and B. Lee, "Dynamic phase-change metafilm absorber for strong designer modulation of visible light," Nanophotonics 10, 713-725 (2021).
  30. S.-J. Kim, "Diffractive VO2 metagrating for strong multi-objective amplitude modulation of optical reflection," Appl. Opt. 60, 2483-2487 (2021). https://doi.org/10.1364/AO.417128
  31. J. Park, S. J. Kim, and M. L. Brongersma, "Condition for unity absorption in an ultrathin and highly lossy film in a Gires-Tournois interferometer configuration," Opt. Lett. 40, 1960-1963 (2015). https://doi.org/10.1364/OL.40.001960
  32. M. A. Kats and F. Capasso, "Optical absorbers based on strong interference in ultra-thin films," Laser Photonics Rev. 10, 735-749 (2016). https://doi.org/10.1002/lpor.201600098
  33. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, "Nanometre optical coatings based on strong interference effects in highly absorbing media," Nat. Mater. 12, 20-24 (2013). https://doi.org/10.1038/nmat3443
  34. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, "Ultra-thin perfect absorber employing a tunable phase change material," Appl. Phys. Lett. 101, 221101 (2012).
  35. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Metamaterial mirrors in optoelectronic devices," Nat. Nanotechnol. 9, 542-547 (2014). https://doi.org/10.1038/nnano.2014.117
  36. A. D. Rakic, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum," Appl. Opt. 34, 4755-4767 (1995). https://doi.org/10.1364/AO.34.004755
  37. I. H. Malitson, "Refraction and dispersion of synthetic sapphire," J. Opt. Soc. Am. 52, 1377-1379 (1962). https://doi.org/10.1364/JOSA.52.001377
  38. S. J. Kim, P. Fan, J.-H. Kang, and M. L. Brongersma, "Creating semiconductor metafilms with designer absorption spectra," Nat. Commun. 6, 7591 (2015).
  39. S. J. Kim, J. Park, M. Esfandyarpour, E. F. Pecora, P. G. Kik, and M. L. Brongersma, "Superabsorbing, artificial metal films constructed from semiconductor nanoantennas," Nano Lett. 16, 3801-3808 (2016). https://doi.org/10.1021/acs.nanolett.6b01198
  40. A. Cordaro, J. van de Groep, S. Raza, E. F. Pecora, F. Priolo, and M. L. Brongersma, "Antireflection high-index metasurfaces combining Mie and Fabry-Perot resonances," ACS Photonics 6, 453-459 (2019). https://doi.org/10.1021/acsphotonics.8b01406
  41. H. R. Philipp, "Optical properties of silicon nitride," J. Electrochem. Soc. 120, 295-300 (1973). https://doi.org/10.1149/1.2403440
  42. M. M. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, "Numerical optimization methods for metasurfaces," Laser Photonics Rev. 14, 1900445 (2020).