• Title/Summary/Keyword: cylindrical pore

Search Result 83, Processing Time 0.023 seconds

Derivation of the Cathodic Current Density around the HLW Canister Due to the Radiolysis of Groundwater (고준위 폐기물 처분용기 주변에서의 지하수의 방사분해에 의한 음 전류 밀도 유도)

  • Choi, Heui-Joo;Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The oxidizing species are generated from the radiolysis of groundwater in the pore of buffer material around the canister used for the disposal of spent fuels. A mathematical model was introduced to calculate the cathodic current density induced by the oxidant around the canister, which determined the corrosion of carbon steel. An analytical solution was derived to get the cathodic current density in the cylindrical coordinate. The cathodic current densities from both the rectangular coordinate and cylindrical coordinate were compared with each other. The source terms and absorbed dose rate for the calculation of the radiolysis were calculated using the ORIGEN2 and MCNP computer code, respectively. The radius of the canister was determined with the new model in order to prevent the local corrosion. The results showed that the new solution made the cathodic current density around 25 % lower than the Marsh model.

A Study of High Temperature Filtration Performance Test on Low Density Cylindrical Ceramic Filters (저밀도 원통형 세라믹 필터의 고온 여과 성능시험 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.213-222
    • /
    • 2001
  • Cylindrical type ceramic filers, that is 60 O.D$\times$10t$\times$600L and 60 O.D$\times$10t$\times$1,000L were manufactured by vacuum forming processes using ceramic ray materials. For cylindrical type ceramic filters, porosity and bulk density were measured for, 80 to 90% and 0.3 to 0.4 g/㎤, respectively at uniform pore size of 41 to 45${\mu}{\textrm}{m}$. Bench scale candle filters (60$\psi$ $\times$10t$\times$600L) were tested using different dusts collected from many industries including chemical processing, glass processing and metal manufacturing pants. Collection efficiencies found out to range from 99.87% to 99.90%, while resistance coefficients from 1.1$\times$10(sup)11/$m^2$ to 1.7$\times$10(sup)11/$m^2$ . Full scale low density ceramic filters (60$\psi$ $\times$10t$\times$1,000L) were also tested at 1 atm, $600^{\circ}C$ to reveal the filtration efficiency, conditioning, and resistance coefficients using two different types of dust as chemical processing and metal refined processing. Darcys law resistance coefficients were measured to range 1.44$\times$10(sup)11/$m^2$ to 2.74$\times$10(sup)11/$m^2$, and collection efficiencies on the range 99.84 to 99.96%, Finally, results of long term performance test showed that filters were conditioned after 170hrs. Experimental conditions for effective filtration were examined under the condition 10 cm/sec face velocity, 3kg/$\textrm{cm}^2$ pulsing pressure, 5 min filtration cycle, and 300msec pulse opening time.

  • PDF

Electrical Resistivity of Cylindrical Cement Core with Successive Substitution by Electrolyte of Different Conductivity (전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2009
  • To investigate the relation between pore fluid conductivity and bulk resistivity of a rock sample it is assumed that electrolyte solution perfectly substitute the pore fluid that occupied the pore space within the sample in general. In this study, it is investigated that how much can the electrolyte solution substitute the pore fluid by repeating the same saturation process. Four kinds of NaCl solutions of 8, 160, 3200, 64000 ${\mu}S$/cm are used. The saturation process has repeated four times for each electrolyte in increasing conductivity order first then four times each in decreasing order. The more the saturation process repeated with the same electrolyte, the more electrolyte solution substitute the pore fluid. Geometric mean of bulk resistivity in increasing and decreasing orders with the same electrolyte solution is assumed to be mostly close to the bulk resistivity with perfect substitution. Bulk resistivity measurements for both increasing and decreasing order differs within 10% to the geometric mean when repeating the saturation process 4 times while maximum 40% difference is observed when single saturation process for each electrolyte solution with increasing order. The modified parallel resistant model can generally represent the relations between pore fluid resistivity and bulk resistivity in the experiment, but more experimental data with various rock samples with different porosity is needed to generalize the model.

Efficiency calculation of the nMCP with 10B doping based on mathematical models

  • Yang, Jianqing;Zhou, Jianrong;Zhang, Lianjun;Tan, Jinhao;Jiang, Xingfen;Zhou, Jianjin;Zhou, Xiaojuan;Hou, Linjun;Song, Yushou;Sun, XinLi;Zhang, Quanhu;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2364-2370
    • /
    • 2021
  • The nMCP (Neutron sensitive microchannel plate) combined with advanced readout electronics is widely used in energy selective neutron imaging because of its good spatial and timing resolution. Neutron detection efficiency is a crucial parameter for the nMCP. In this paper, a mathematical model based on the oblique cylindrical channel and elliptical pore was established to calculate the neutron absorption probability, the escape probability of charged particles and overall detection efficiency of nMCP and analyze the effects of neutron incident position, pore diameter, wall thickness and bias angle. It was shown that when the doping concentration of the nMCP was 10 mol%, the thickness of nMCP was 0.6 mm, the detection efficiency could reach maximum value, about 24% for thermal neutrons if the pore diameter was 6 ㎛, the wall thickness was 2 ㎛ and the bias angle was 3 or 6°. The calculated results are of great significance for evaluating the detection efficiency of the nMCP. In a subsequent companion paper, the mathematical model would be extended to the case of the spatial resolution and detection efficiency optimization of the coating nMCP.

Fabrication and Permeability of Stainless Steel Filter by using Filler Metal (Filler metal을 이용한 Stainless steel필터의 제조 및 통기도)

  • 배승열;안인섭;성택경;최주호
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

Microstructure Control of HAp Based Artificial Bone Using Multi-extrusion Process

  • Jang, Dong-Woo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Porous hydroxyapatite has been widely used as clinical implanted material. However, it has poor mechanical properties. To increase the strength as well as the biocompatibility of the porous HAp based artificial bone, it was fabricated by multi-extrusion process. Hydroxyapatite and graphite powders were mixed separately with ethylene vinely acetate and steric acid by shear mixing process. Hydroxyapatite composites containing porous microstructure were fabricated by arranging it in the die and subject it to extrusion process. Burn-out and sintering processes were performed to remove the binder and graphite as well as increase the density. The external and internal diameter of cylindrical hollow core were approximately 10.4 mm and 4.2 mm, respectively. The size of pore channel designed to increase bone growth (osteconduction) was around 150 ${\mu}m$ in diameter. X-ray diffraction analysis and SEM observation were performed to identity the crystal structure and the detailed microstructure, respectively.

  • PDF

Aluminium Salt of Phosphomolybdic Acid Fabricated by Nanocasting Strategy: An Efficient System for Selective Oxidation of Benzyl Alcohols

  • Aliyan, Hamid;Fazaeli, Razieh;Habibollahi, Nasibeh
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.591-596
    • /
    • 2012
  • Preparation of $AlPMo_{12}O_{40}$ (AlPMo) salts, supported on mesostructured SBA-15 silica, by the reaction deposition strategy causes the formation of isolated AlPMo nanocrystals inside the nanotubular channels. The remarkable characteristic of the SBA-15 structure is that all the cylindrical pores are connected by some small channels. This makes the whole pore system in SBA-15 three-dimensional. We have used 2D hexagonal SBA-15 silicas as hard templates for the nanofabrication of AlPMo salt nanocrystal. The oxidation of alcohols occurs effectively and selectively with $H_2O_2$ as the oxidant. AlPMo salt nanocrystal was used as the catalyst.

Acoustic Characteristics of Sand Sediment Slab with Water- and Air-filled Pore

  • Roh Heui-Seol;Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.223-226
    • /
    • 2001
  • Acoustic pressure transmission coefficient and phase velocity are measured as the functions of water porosity and air porosity in sand sediment slabs with water- and air-filled pores. Pores in the sand sediment slab we modeled as the structure of circular cylindrical tube shape filled with water and air. The first kind(fast) wave and second kind (slow) wave, identified by Biot, in the solid and fluid mixed medium are affected by the presence of water and air pores. Acoustic characteristics of such porous medium in water are also theoretically investigated in terms of the modified Biot-Attenborough (MBA) model, which uses the separate treatment of viscosity effect and thermal effect in non-rigid porous medium with water- and air-filed pores. The information on the fast waves introduces new concepts of the generalized tortuosity factor and dynamic shape factor.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

Experimental Study on the Partial Oxidation Reforming of CH4/O2 Mixture in Two-Section Porous Media at High Pressure Conditions (고압 분위기에서 CH4/O2 혼합기의 2단 다공체 내 부분산화 개질에 관한 실험적 연구)

  • Guahk, Young Tae;Lee, Dae Keun;Kim, Seung Gon;Ko, Chang-Bog;Park, Jong-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.73-74
    • /
    • 2015
  • Synthesis gas such as hydrogen and carbon monoxide was produced from $CH_4/oxygen$ mixture using insulated pressurized porous media combustor. Experimentally, two cylindrical SiC foams with the different pore density were piled up in a quartz tube and fully premixed mixture was supplied in the axial direction. After stabilizing fuel-rich flame at the interface of the two foams at several pressure conditions, mole fractions of synthesis gases were measured by gas chromatography. Heat recirculation through the inner foam structure could extend the flow velocity of stable region over the laminar burning velocity. As the pressure increased, the rich flammability limit, $H_2/CO$ ratio, and module M increased.

  • PDF