• Title/Summary/Keyword: cylindrical grinding

Search Result 90, Processing Time 0.026 seconds

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

A Study on the Determination of the Oil Gap in the Hydrostatic Spindle System for a Crank Shaft Grinding Machine (크랭크 샤프트 연삭기용 유정압 스핀들의 유막 간격 선정에 관한 연구)

  • Park, Dong-Keun;Choi, Chi-Hyuk;Lee, In-Jae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-415
    • /
    • 2011
  • A cylindrical type of self-controlled restrictor is designed for hydrostatic bearing of crank shaft for a grinding wheel spindle. The effect of operation parameters, clearance between spindle and housing on bearing stiffness are analyzed to determine the optimum conditions of operation parameters. The lowest values of the supply pressure and the loads by the theoretical and experimental results assuming oil film thickness and shape of pocket are compared.

Effects of the Grinding Conditions on the Shape of Center Ground Part (연삭조건이 원통연삭 공작물 형상에 미치는 영향)

  • Cho, Jae-Il;Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.61-68
    • /
    • 1998
  • The form accuracy of parts has become an important parameter. Therefore, dimensional tolerance and geometric tolerance are used in the design stage to satisfy required quality and functions of parts. But the informations on the machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them. The results are as follows, The effects of work speed and depth of cut on workpiece shape are negligible compared with the effect of traverse speed. There is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increased.

  • PDF

A Study on the Optimization of Grinding Energy Density for a Non-linear Grinding System with Dual Time Delay (이중 시간지연을 가지는 비선형 연삭기의 가공 에너지 밀도 최적화 연구)

  • Jung, Jeehyun;Kim, Pilkee;Lee, Jung-In;Lee, Sooyoung;Lee, Jong-Hang;Kim, Kyung-Dong;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.493-498
    • /
    • 2013
  • The present study treats the optimization process for a non-linear grinding system with dual time delay, mainly from the energetic viewpoint. To this end, the stability of the grinding system is investigated first with regard to the grinding wheel rotation speed. The concept of grinding energy density is newly proposed as the primary figure of merit and this quantity is evaluated at various stable and limit cycle conditions. The computational results show that simple monotonic trend in energy density is observed under stable conditions, whilst rather complicated behaviors can appear when the conditions are associated with limit cycle oscillations. Finally, the relations between the vibration amplitude and the energy density and their implications on the engineering decision/compromise are discussed.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

End-mill Modeling and Manufacturing Methodology via Cutting Simulation (Cutting Simulation을 이용한 End-milling Cutter의 모델링 및 제작에 관한 연구)

  • Kim Jae-Hyun;Kim Jong-Han;Ko Tae-Jo;Park Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.151-159
    • /
    • 2006
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data f3r fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data for machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used for virtual cutting test and analysis as well.

A Study on the Characteristics of the Mirror Surface Abrasive Finishing using Micro Abrasive Film (마이크로 필름을 이용한 경면연마가공 특성에 관한 연구)

  • 김홍배;배명일;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.970-976
    • /
    • 1997
  • The ultra-precision machining is widely used for final machining process of precision parts, so in this study, mirror surface finishing systems using the micro abrasive film, one of ultra-precision machining method, have to examine mirror surface characteristics of the cylindrical workpiece(SM45) such as surface roughness, workpiece removal and evaluated under the condition varing film feed rate, applied pressure, grinding speed after fixing other condition. It was found that varrious machining condition have significant influences on workpiece removal, surface roughness.

  • PDF

Analysis on the Surface Accuracy in according to Geometry of End Mill (엔드밀의 형상에 따른 가공정밀도 해석)

  • 고성림;이상규;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1001-1004
    • /
    • 2000
  • As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.

  • PDF

End-mill Manufacturing and Developing of Processing Verification via Cutting Simulation (Cutting Simulation을 이용한 End-milling Cutter의 제작 및 가공 검증 기술 개발)

  • Kim J.H.;Kim J.H.;Ko T.J.;Park J.W.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.453-454
    • /
    • 2006
  • This paper describes a processing verification technique for developing about end-milling cutters. Developed software is processing verification module for manufacturing. By using cutting simulation method, we can obtain center points of finding wheel via Boolean operation between a grinding wheel and a cylindrical workpiece. The obtained CL data can be used for calculating NC data. After then, we can simulate by using designed grinding machine and NC data. This research has been implemented on a commercial CAD system by using the API function programming. The operator can evaluate the cutting simulation process and reduce the time of design and manufacturing.

  • PDF

End-mill Modeling and Manufacturing Methodology via Cutting simulation (Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구)

  • Kim J.H.;Park S.J.;Kim J.H.;Park J.W.;Ko T.J.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF