• 제목/요약/키워드: cylinder type

검색결과 851건 처리시간 0.029초

Counter Weight Design of Multi-stage Reciprocating Air Compressors (다단 왕복동 공기압축기의 평형추 설계)

  • Kim, Young-Cheol;Kim, Byung-Ok;Shin, Hyun-Ik
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.656-661
    • /
    • 2003
  • Modem reciprocating air compressors have tendency to a multi-stage W-type or V-type cylinder arrangement for the purpose of high outlet pressure, compactness and low vibration and noise. A valid counter weight calculation method using the complex expression is proposed for reducing the inertia forces of the compressor. Counter weight removes only 1st forward whirl component. Counter weight formulations are applied to the six various compressor structures which are (a) 1 cylinder single-throw crank shaft, (b) 2 cylinder single-throw crank shaft (c) 2 cylinder double-throw clank shaft, (d) 3 cylinder single-throw crank shaft, (e) 4 cylinder single-throw crank shaft and (f) 4 cylinder double-throw crank shaft. The improvement of performance is verified through available vibration test.

  • PDF

A Study on Design of Decatizing Cylinder with an Uniformly Distributed Pressure using Finite Element Method (유한요소법을 이용한 균압 구조를 가진 Decatzing Cylinder 설계에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.111-120
    • /
    • 2002
  • In this paper, the design of a decatizing cylinder with uniformly distributed pressure in a decatizing system is investigated by using the Finite Element Method. Particularly, since deflection of a cylinder will not perform to iron the fabrics, the cylinder design insuring uniform pressure is very important. In this paper proposed two improved cylinder model obtained by changing the support type of the bean and the support location. And perform optimization with two improved cylinder model.

  • PDF

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • 제2권1호
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

Experimental Investigations of Flow Characteristics by Wing Type Vortex Generators Set up Behind a Circular Cylinder in a Rectangular Channel (사각채널내 와동발생기가 부착된 원형실린더 하류 유동 특성에 대한 실험적 연구)

  • 이상민;하홍영;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1076-1085
    • /
    • 2001
  • Experimental investigations of the longitudinal vortices, which are produced by wing type vortex generators set up behind a circular cylinder in a rectangular channel, are presented. When the circular cylinder is set up in the rectangular channel, a horseshoe vortex is formed just upsteam of the circular cylinder. It generates a turbulent wake region behind the circular cylinder. Therefore, the region of the pressure loss behind the circular cylinder in increased and the size of the wake is small. These problems can be achieved by longitudinal vortices which are generated by wing-type vortex generator. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from 20 degree to 45, but the spacing between the vortex generators is fixed 6cm. The 3-dimensional mean velocity measurements are made using a five-hole probe. The vorticity field and streamwise velocity contour are obtained from the velocity field. The following results are obtained. Circulation strength is the maximum value when the angle of attack($\beta$) is $30^{\circ}$, and the vorticity field and streamwise velocity contour in case of $\beta$=$20^{\circ}$ show the trend similar to these in case of $\beta$=$30^{\circ}$, but do not in case of $\beta$=$45^{\circ}$.

  • PDF

Design of the Sequentially Operated-Hydraulic Cylinders Type Sluice Gate Minimizing the Operating Force (작동력을 최소화시키는 순차작동-유압실린더식 수문의 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.893-898
    • /
    • 2004
  • The hydraulic cylinder is used for actuating a sluice gate which controls the volume of water in the reservoir. Generally, the one cylinder type is used to operate the sluice gate. In order to reduce the required cylinder force to operate the sluice gate significantly, the sequentially operated-hydraulic cylinders type is designed and the optimal locating points of cylinders are searched using the complex method that is one kind of constrained direct search method.

  • PDF

Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle (차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험)

  • Chung, Sang-Su;Park, Ji-Sang;Kim, Tae-Wook;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

A Study on the Driving of Rods in Hydraulic Bent-axis-type Axial Piston Pump Part 1: The Theoretical Analysis of Driving Mechanism (유압 사축식 액셜 피스톤 펌프의 로드 구동에 관한 연구 제1보: 구동 메카니즘의 이론해석)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.51-57
    • /
    • 1998
  • Recently, bent-axis-type axial piston pumps driven by rods being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps driven by rods, it is necessary to know characteristics of the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I studied the theoretical driving mechanisms of cylinder block driven by rods through geometric method. I found that the cylinder block was driven by one rod in limited area and the driving area was changed by rod's tilting angle and cylinder block's swivel angle.

Development of Hydrogen Type3 composite cylinder for Fuel Cell vehicle (연료전지 차량용 TYPE3 복합재 고압용기 개발)

  • Chung, Jae-Han;Cho, Sung-Min;Kim, Tae-Wook;Park, Ji-Sang;Jeong, Sang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.165-168
    • /
    • 2007
  • The objective of this study is to demonstrate and commercialized for on-board fuel storage system for the hydrogen fuel cell vehicles. Type3 composite cylinder is consisting of the full wrapped composites on a seamless aluminum liner. Especially, the seamless aluminum liner has been commercialized with development of fabrication through this study. The key technologies, including design, analysis and the optimized filament winding process for 350bar composite cylinder, were established and verified with design qualification test in accordance with international standard. And the facilities for fabrication and design qualification test have been constructed.

  • PDF

Development of Type3 Composite Cylinder for Fuel Cell Vehicle (연료전지 차량용 TYPE3 복합재 압력용기 개발)

  • Park, Ji-Sang;Cheung, Sang-Su;Chung, Jae-Han;Cho, Sung-Min;Kim, Tae-Wook
    • New & Renewable Energy
    • /
    • 제4권3호
    • /
    • pp.51-57
    • /
    • 2008
  • The objective of this study is to develop and validate a compressed hydrogen storage system for fuel cell vehicles. The type3 composite cylinder consists of full wrapped composites on a seamless aluminum liner. The key technologies, including design, analysis, and optimized fabrication process for 350bar composite cylinder, were established and verified, and the facilities for fabrication and validation testing have been constructed. Prototype cylinders were fabricated and validated through burst test and ambient cycling test in accordance with international standard.

  • PDF

A Case Study and Analysis of the Causes for Natural Gas Vehicle Accidents (천연가스자동차 사고사례 및 원인분석)

  • Kim, Young-Seob;Cho, Eun-Goo;Kim, Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • 제13권2호
    • /
    • pp.41-48
    • /
    • 2009
  • I collected the cases of CNG vehicle accidents which had happened for 30 years and analyzed the causes of the accidents according to each type of cylinders. There are about six accidents including three cylinder explosion accidents due to bad heat treatment, one composite damage, one CNG vehicle fire, and one fuel piping accident owing to the poor maintenance. When looking into the cylinder types involved in the accidents and the causes, 29% of the cylinder accidents are Type I and 24% Type IV, 16% Type II, and 14% Type III. 37% of the accidents are caused by the defects of the raw materials and the errors of a manufacturing process, 16% by the stress corrosion cracking as a result of the repetitive use, 15% by the cylinder's explosion on account of the malfunction of PRD(Pressure Relief Device) and the overpressure. The remainders of the causes are fire and unknown causes. Therefore, cylinder manufacturers have to strengthen quality management of raw materials and manufacturing process and painting regardless of each type of cylinder. Also bus operators need to make an effort to keep safety condition through every day check.

  • PDF