• Title/Summary/Keyword: cylinder type

Search Result 851, Processing Time 0.025 seconds

Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 배종욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators (굴삭기의 정적/동적 응력 및 구동 특성 계측)

  • Kim, Gyu-Sung;Choung, Joon-Mo;Jang, Young-Sik;Choe, Ick-Hung;Lee, Joon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

Stress analysis near a circular hole in a flat plate reinforced by a cylinder (원통으로 보강된 평판의 응력해석)

  • 정인승;이대희;이완익;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.800-809
    • /
    • 1987
  • For precise stress analysis of pressure vessel nozzle junction area, it should be modelized as a cylindrical shell with a cylindrical outlet attached on it, but because of its geometrical complexity, exact analysis and solution is very difficult to obtain. So, when the nozzle diameter is small compared to that of vessel, it is general to simplify the model as a flat plate with a cylinder. As the current nozzle shape is manufactured as "Through Type" to reduce the stress concentration around the nozzle junction part of pressure vessel, a theoretical analysis on the cylinder with finite length should be performed to accomodate this fact. In this paper, the general solutions which were obtained by applying Fulgge's theory to the finite length cylinder, membrane and bending theory to the flat plate were superposed to analyze the model. Each theoretical optimal values were obtained through the analysis of stress concentration caused by the variation of cylinder length and thickness, and these results were estimated by performing model experimentation.mentation.

Experimental Study on the Heat Transfer under the Effects of Wake In a Turbine Cascade (후류의 영향을 고려한 터빈 캐스케이드내 열전달 현상에 대한 실험적 연구)

  • Min, H.K.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.36-41
    • /
    • 2001
  • In order to simulate wake of stator and a gas turbine engine's balde row, acryl cylinder and a linear turbine cascade were used respectively in this study. Experimental of heat transfer distributions was done on the passage endwall and blade suction surface. Temperature distributions on the experimental regions were obtained through image processing system by using the cholesteric type liquid crystal which has chain structure of metyl$(CH_3)$. To represent the degree of heat transfer, dimensionless St number was used. The results show that heat transfer on the blade suction surface was increased due to the wake from the cylinder and was decreased as the distance between cylinder row and blade row increases. Because of groth of passage vortex, heat transfer distributions on the trailing edge area showed triangular shape which was little changed with wake. On the other hand, heat transfer on the passage endwall was decreased due to the wake from cylinder. As the distance between cylinder row and blade row increases, heat transfer was more decreased.

  • PDF

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

Development of a New Rapid Compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 정남훈;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.69-75
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature, composition of gas in the cylinder, existence of cylinder lubricant etc. Rapid compression expansion machine, the position and speed of piston of which are able to be controlled by means of a system controlled electrically, and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to copy with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled, hydraulically actuated, and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement on frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder, those are the key function for the in-cylinder combustion experiments on internal combustion engines.

  • PDF

An Experimental Study on Cushion Characteristics of pneumatic Cylinder for Vertically-Mounted. (공압 수직실린더의 쿠션특성에 관한 실험적 연구)

  • Kim, Dong-Su;Kim, Hyeong-Ui;Lee, Sang-Cheon
    • 연구논문집
    • /
    • s.28
    • /
    • pp.73-87
    • /
    • 1998
  • A pneumatic control system of compressed air as a working fluid has a variety of advantages such as low price, high respondence, non-explosion and good control performance and thus has many applications in the field of automobile, electronic and semiconductor industry. However, it has a difficulty in contolling a precise position due to quick response of system and compressibility of working fluid and. in particular, shock stress may occur due to an external load, resulting in fracture of a cylinder cap unless cushion device is equipped in the linear actuator. To avoid this, a cushion device should be installed for damping effect of the external load and the supply pressure as well as for decreasing shock stress and vibration caused by high speed rotation. Previous studies include dimensionless analyses and computer simulations of cushion capability and experiments of horizontally-mounted cylinder performances. A new attempt is experimentally made in this study using a vertically-mounted cylinder under an operation condition of 4, 5 and 6 (bar) as supply pressure and 40, 70 and 100 (kgf) as external load. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion characteristics was also revealed in the meter-in circuit.

  • PDF

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

Study of Quantitative Assessment Standard for Type 1 and Type 2 Gas Cylinders Using Acoustic Emission Testing (음향방출법을 이용한 Type 1 및 Type 2 가스실린더의 정량적 평가기준에 대한 연구)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Kim, Kyung-Hoon;Yoon, Dong-Jin;Bae, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Acoustic emission testing (AET) of cylinders is advantageous in that it can be directly conducted on cylinders installed in a car, without needing to dissemble them on a real-time basis. Therefore, users prefer AET over other nondestructive testing methods. Owing to these advantages of AET, it has been approved by the Department of Transportation of the U.S. as a safety evaluation method for pressure containers or as an alternative to the hydroproof testing method. This paper presents a study of the quantitative evaluation criteria for a container having ultrasonic testing defects and also for Type 1 and Type 2 gas cylinders, which are defective seamless pressure containers provided by NK, a manufacturer of pressure containers. For the Type 1 cylinder, the process from crack growth to leak was observed in a repetitive fatigue test using a 113 L container according to ASTM E 1419-02. Further, for the Type 2 cylinder, integrity was evaluated using a 119 L sound container and a container damaged by hydraulic pressure, by the slow-fill method according to ASTM E 2191-02. Based on the AET results of the Type 1 and Type 2 cylinders, quantitative evaluation criteria were established for a defective and non-defective container.