• Title/Summary/Keyword: cylinder test

Search Result 908, Processing Time 0.022 seconds

Finite Element Analysis of Cellular Material According to Aspect Ratio of Cell (셀의 형상비에 따른 미세기공 재료의 유한요소해석)

  • 윤성원;이정우;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.890-893
    • /
    • 2002
  • This study is focused to predict the behavior of Al foam with closed-cell structure during the 3 point bending test and the upsetting test according to aspect ratio. We calculated characters of aluminum foams with closed-cell structure and took the simulation. The effects on the aspect ratio of the cell was investigated parametrically. The analysis was carried out on two models, First, the bending test in elasticity of the rectangular beam, and Second, the upsetting test in plasticity of the circular cylinder. In the analysis, the deformation of the beam and the cylinder was influenced by the aspect ratio of the cell. Further, We assumed that the geometry of feared aluminum cell change the stress and strain in the test.

  • PDF

An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines (중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구)

  • Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

An Experiments and Characterisics Analysis of the Sealless Cylinder (씰리스 실린더의 특성 해석 및 실험)

  • Kim, Young-Cheol;Kim, Dong-Soo;Bae, Sang-Kyu;Kim, Sung-Jong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.980-985
    • /
    • 2004
  • This paper shows a performance analysis for conical type sealless cylinders and rod bearings. The pistons without seal have partly cylindrical and conical shapes. 2 dimensional Reynolds equation and FD(finite differential) numerical techniques are utilized for the performance analysis. The relationship among self-centering forces and leakage flows are investigated. Also, optimal design values for a sealless cylinder are presented. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was manufactured respectively. Leakage flow test is conducted to evaluate performance of piston and rod bearing in sealless cylinder.

  • PDF

Derivation of Empirical Erosion Equation of the 40 mm Long Hollow Cylinder (40 mm 장축공동실린더의 마모경험식 유도)

  • Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.171-175
    • /
    • 2009
  • One of the critical issues associated with the 40mm long hollow cylinder's development and maintenance is the prediction of cylinder erosion. The actual firing test is the most accurate method to measure the cylinder erosion rate. But it costs a great deal and requires a long measurement time. Hence many empirical methods have been proposed to predict the erosion rate and life span of long hollow cylinders. An EFC formula is calculated. An approximate erosion formula for the ammunition type A is derived to interpolate 16 observation values up to 4,000 rounds. A new erosion equation and muzzle velocity formula are also suggested. Several numerical results are presented.

Simulation and Experiment of Elastomer Seal for Pneumatic Servo Cylinder

  • Hur, Shin;Song, Kyung Jun;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • The rubber seal is a part inserted into servo cylinder to keep the air pressure constant. In order for efficient movements of the servo cylinder, the frictional coefficient of the rubber seal needs to be minimized while the sealing is maintained. In this work the friction characteristics of rubber seal specimen are tested on metal plate at various conditions. The experimental conditions include roughness level, applied pressure, lubrication, and rubbing speed. The design of experiment approach is taken to assess the effect of each parameter. The nonlinear frictional response of the rubber is applied to the FEM model simulating the servo cylinder movement. The result demonstrates that precise optimization of the servo cylinder movement must be preceded by preliminary experiments coupled with the theory and FEM model.

An Experimental Study on the Wake behind a Round Cylinder with Swirling Flow in the Horizontal Circular Tube (선회가 있는 수평원통관에서 원형실린더의 후류에 관한 실험적 연구)

  • Chang Tae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.417-425
    • /
    • 2005
  • An experimental study is performed on the turbulent swirling flow behind a crcular cylinder using 2-D PIV technique. The Reynolds numbers investigated are 10.000, 15,000. 20.000 and 25.000. The mean velocity vector, time mean axial velocity, turbulence intensity, kinetic energy and Reynolds shear stress behind the cylinder are measured before and behind the cylinder along the test tube. A comparison is included without swirling flow behind a circular and square cylinder. The recirculation zones are shown unsymmetric profiles.

An Empirical Study on the Designed Burst Pressure of Type3 Composite Cylinder (Type3 복합용기 설계 파열압에 관한 실증연구)

  • Kim, ChangJong;Cho, Sung Min;Kim, Eun Jung;Yoon, Kee Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.20-26
    • /
    • 2013
  • In this research, an empirical study on the designed burst pressure of Type3 composite cylinder was performed by hydrostatic burst test equipment. The designed burst pressure of Type3 composite cylinders, which are 6.8 liter and 31 MPa of service pressure, was estimated with the analysis using the finite element method. In order to confirm its accuracy, the burst test of small Type3 composite cylinders was perfomed through three times. The burst test equipment can pressurize to 400 MPa. As a result of comparison between the designed burst pressure and actual burst pressure, the difference was less than 4 percentage. With a test result, the analysis accuracy was verified. This technique will be applied to both qualification and inspection for the composite cylinder.

Effect of Acoustic Emission During a Fatigue Test with Defect for Type II Gas Cylinder (피로시험시 발생하는 음향방출신호를 이용한 Type II Gas Cylinder의 손상평가)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;So, Cheal-Ho;Lee, Jong-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • This research seeks to evaluate damage on type II gas cylinder by an acoustic emission test when executing 20000 cycles fatigue test and thereafter burst test. Used gas cylinders in the experimental are three types as follows; one is sound cylinder, others are cylinders which contain longitudinal and transverse artificial defect. The size of artificial defect is a depth of 3 mm, width of 3 mm and length of 50 mm. In the case of the cylinder which artificial defect, unlike the expectation that it will burst in low pressure, the burst pressure of the cylinder did not differ much according to whether or not there were defects. However, when there was longitudinal defect, the location of burst was near the location of defect. This leads to the effect in which the thickness of the composite material becomes thinner according to the length of the longitudinal defect and this is judged to have an effect on the location of initiation and growth of crack in the liner. Also, for the acoustic emission signal, when there is longitudinal defect, the ratio of an event occurring at defect position among overall hits is more than 50 %, and the source location also accords very precisely with defect position.

Effective test of lacquer in marine diesel engines

  • Hong, Sung-Ho;Ju, Seung-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.199-208
    • /
    • 2017
  • We perform an experiment on lacquer formation with simple test device. The anti-lacquer is one of important issues to increase durability, and to improve performance in the engines because the lacquer formation cause sticking of fuel injection pump, scuffing of cylinder liners, and increase of lubricant oil consumption in the marine diesel engines. We suggest this simple test in order to save enormous experimental cost in marine diesel engines, and in order to have ease in performing the various tests. The influences of the Base Number (BN) of lubricant oils and the sulfur content of fuel oils in the formation of lacquer are investigated. In order to investigate physical and chemical properties of lacquer, we perform a variety of tests such as, visual inspection, EDS. In addition, we investigate adhesion of lacquer by pull-off test quantitatively, and perform dissolution test with dilute sulfuric acid.

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.