DOI QR코드

DOI QR Code

Effect of Acoustic Emission During a Fatigue Test with Defect for Type II Gas Cylinder

피로시험시 발생하는 음향방출신호를 이용한 Type II Gas Cylinder의 손상평가

  • Received : 2011.11.14
  • Accepted : 2012.04.15
  • Published : 2012.04.30

Abstract

This research seeks to evaluate damage on type II gas cylinder by an acoustic emission test when executing 20000 cycles fatigue test and thereafter burst test. Used gas cylinders in the experimental are three types as follows; one is sound cylinder, others are cylinders which contain longitudinal and transverse artificial defect. The size of artificial defect is a depth of 3 mm, width of 3 mm and length of 50 mm. In the case of the cylinder which artificial defect, unlike the expectation that it will burst in low pressure, the burst pressure of the cylinder did not differ much according to whether or not there were defects. However, when there was longitudinal defect, the location of burst was near the location of defect. This leads to the effect in which the thickness of the composite material becomes thinner according to the length of the longitudinal defect and this is judged to have an effect on the location of initiation and growth of crack in the liner. Also, for the acoustic emission signal, when there is longitudinal defect, the ratio of an event occurring at defect position among overall hits is more than 50 %, and the source location also accords very precisely with defect position.

본 연구는 Type II 가스실린터의 20,000 회 피로시험과 파열시험시 음향방출시험을 병행하여 용기의 손상정도를 평가하고자 하였으며, 실험에 사용된 용기는 결함 크기가 $3mm{\times}3mm{\times}50mm$ (폭${\times}$깊이${\times}$길이)이고 결함 방향이 용기의 종방향 및 횡방향인 인공결함용기와 건전한 용기 등 세 종류이다. 피로시험시 발생된 음향방출신호는 종방향결함의 경우 전체 신호 중 결함에서 발생된 이벤트의 비율이 50 % 이상이며, 음향방출신호의 위치표정도 매우 정확하게 일치하였다. 또한 파열시험에서는 인공결함용기가 결함 위치에서 에상파열압력보다 낮은 압력으로 파열될거라는 예상과는 달리 인공결함용기의 파열압력은 건전한 용기와 큰 차이가 없었으며, 단지 종방향 인공결함용기의 경우 파열위치가 결함 위치와 근접하게 발생하였다. 이는 종방향 결함의 길이만큼 복합재료의 두께가 얇아지는 효과로 나타나게 되어 금속라이너의 피로반복시 결함 발생과 성장위치에 영향을 미친 것으로 판단된다.

Keywords

References

  1. Henry E. Seiff, Some Things to be Learned from the Other Compressed Gas Fuel System, CVEF, (2008)
  2. Harold D. Beeson, Dennis D. Davis, William L. Ross, Sr. Ralph M. Tapphorn, Composite Overwrapped Pressure Vessels, NASA, TP-2002-210769, (2002)
  3. Mark Toughiry, Examination Of The Nondestructive Evaluation Of Composite Gas Cylinders, United States Department of Transportation, NTIAC / A7621-18: CRC-CD8.1, (2002)
  4. General Motors Corporation, Development of Inspection Technology for NGV Fuel Tanks, FaAA-SF-R-97-05-04, (1997)
  5. J.O.lee, J.S.lee, U.H.Yoon and S.H.Lee, "Evaluation of adhesive bonding quality by Acoustic emission", J. of KSNT, 16(2), (1996)
  6. A. Akhtar, D. Kung and D.R. Westrook, "Acoustic Emission from FRP Damaged Hoop Wrapped Cylinders", Materials Evaluation, 58(3), 462-469, (2000)

Cited by

  1. Study of Quantitative Assessment Standard for Type 1 and Type 2 Gas Cylinders Using Acoustic Emission Testing vol.34, pp.2, 2014, https://doi.org/10.7779/JKSNT.2014.34.2.176