• Title/Summary/Keyword: cylinder test

Search Result 908, Processing Time 0.056 seconds

The Analysis and Comparison of Fire Test for the High Pressure Composite Cylinder by Type (고압복합재용기 Type에 따른 화염시험 비교 분석)

  • Kim, Chang Jong;Lee, Seung Hoon;Lyu, Geun Jun;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.98.1-98.1
    • /
    • 2011
  • 전 세계적으로 대표적인 대중교통으로 천연가스버스가 운행 중에 있으며, 천연가스의 저장을 위하여 대부분의 차량이 복합용기를 사용하고 있다. 또한 친환경자동차로 개발되고 있는 수소연료전지자동차도 수소 저장용으로 복합용기를 적용하여 상용화를 추진 중에 있다. 복합용기의 상용화가 증가하면서 복합용기의 안전성 확보가 가장 중요한 이슈가 되고 있다. 기체상태의 고압가스를 교통수단에 적용하기 위하여, 저장매체인 고압복합용기의 안전성 및 기술 확보를 위한 기술개발과 안전기준의 확립을 위한 기준개발이 미국, 유럽, 일본 등 다수의 국가에서 진행되고 있다. 현재 복합용기의 안전성을 확인하는 기준은 각 나라의 기준에 따라 진행되고 있으며 천연가스자동차용 저장용기 국제표준으로는 ISO 11439가 적용되고 있다. 수소연료전지자동차용 수소용기의 안전기준은 아직 확립되지 않은 상태이며, 개발된 초안으로는 국제규정으로 UN ECE R No.79 및 국제기술표준으로 ISO/TS 15869가 있다. 개발 중인 국제기준 및 국내기준에서 가장 취약한 부분이 화염시험이다. 화염시험은 자동차에 화재가 발생했을 경우 용기의 폭발을 막기 위하여 안전밸브가 정상적으로 작동하는 지를 확인하는 시험이다. 하지만 현재의 시험방법으로는 자동차에서 발생하는 국부적인 화염에 대한 안전성을 확인하기가 어려운 실정이다. 본 연구에서는 국내의 화염시험기준을 개발하기 위해 수행된 화염시험에 대한 결과와 화염시험장치를 제안하고자 한다.

  • PDF

Partially confined circular members subjected to axial compression: Analysis of concrete confined by steel ties

  • Eid, R.;Dancygier, A.N.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.737-765
    • /
    • 2005
  • This paper presents a theoretical model for the behavior of partially confined axi-symmetric reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem involves boundary conditions that are defined along a relatively simple geometry. However, extending the analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which is also changing as the axial load increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness $t_{eq}$ and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material. According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the equivalent thickness $t_{eq}$. Comparison with published test results of confined reinforced concrete stress-strain curves shows good agreement between the test and the analytical results.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Experimental Study of Relation between Air exclusion & Quality of the Concrete (공기 침투성과 콘크리트 품질의 상관관계에 관한 실험적 연구)

  • 박성우;윤성훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.685-691
    • /
    • 2002
  • Air exclusion test which is the way to assess the quality of the concrete is a part destructive test for minor damaging and accurate measurement. it has been well known but the test process is complexed, so it has been well known in foreign country but it is not usable in our country. For this experiment, it analyze its special quality through the inspection for the factor which effect to the result or accuracy for the Air exclusion test, and it examine through the experiment for the Non destructive test and cylinder compressive test which is different from the air exclusion test. We suggest the suitable classified table for the domestic concrete condition through the comparative analysis against the overseas result that has been suggested before.

  • PDF

A Study on the Pull-out test for Non-Destructive Evaluation of Concrete Strength (콘크리트 비파괴강도 추정을 위한 인발시험법에 대한 연구)

  • 한만엽;김동욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.639-642
    • /
    • 1999
  • Pullout test known as Lok test among the test methods to evaluate concrete strength strength is a test method which is used to decide the form removal time by assessing the early strength of concrete in a new construction, or to control the quality of newly placed concrete. This method has inconvenience to place inserts on the form work in advance, however, the placing work is quite simple and it has advantage that the strength can be measured at field as long as the inserts are placed. In this study, the first step is to investigate the properties of test method itself, by performing the laboratory test which covers deviation of the method and factors affecting the results, etc. The second step is to correlate the result with cylinder strength and other NDT methods such as rebound hammer, ultrasonic method, etc. And that, the results are compared with foreign results to find the differences between the two. In this research, new factors such as moisture content, area of aggregate failure cross section and area of aggregate separation cross section, etc as well as wate-cement ratio and age are investigated.

  • PDF

Setup Procedure of Dump Valve for Full-Scale Airframe Test (전기체 구조시험의 덤프밸브 조절절차 개발;)

  • Kim, Sung-Chan;Kim, Sung-Jun;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1257
    • /
    • 2003
  • This paper present a procedure of meter-out flow control method for dump valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

STATISTICAL ALGORITHMS FOR ENGINE KNOCK DETECTION

  • Stotsky, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • A knock detection circuit that is based on the signal of an accelerometer installed on the engine block of a spark ignition automotive engine has a band-pass filter with a certain frequency as a parameter to be calibrated. A new statistical method for the determination of the frequency which is the most suitable for the knock detection in real-time applications is proposed. The method uses both the cylinder pressure and block vibration signals and is divided into two steps. In both steps, a new recursive trigonometric interpolation method that calculates the frequency contents of the signals is applied. The new trigonometric interpolation method developed in this paper improves the performance of the Discrete Fourier Transformation, allowing a flexible choice of the size of the moving window. In the first step, the frequency contents of the cylinder pressure signal are calculated. The knock is detected in the cylinder of the engine cycle for which at least one value of the maximal amplitudes calculated via the trigonometric interpolation method exceeds a threshold value indicating a considerable amount of oscillations in the pressure signal; this cycle is selected as a knocking cycle. In the second step, the frequency analysis is performed on the block vibration signal for the cycles selected in the previous step. The knock detectability, which is an individual cylinder attribute at a certain frequency, is verified via a statistical hypothesis test for testing the equality of two mean values, i.e. mean values of the amplitudes for knocking and non-knocking cycles. Signal-to-noise ratio is associated in this paper with the value of t-statistic. The frequency with the largest signal-to-noise ratio (the value of t-statistic) is chosen for implementation in the engine knock detection circuit.

Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine (제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.