• Title/Summary/Keyword: cylinder test

Search Result 908, Processing Time 0.02 seconds

Failure Pressure Prediction of Composite Cylinders for Hydrogen Storage Using Thermo-mechanical Analysis and Neural Network

  • Hu, J.;Sundararaman, S.;Menta, V.G.K.;Chandrashekhara, K.;Chernicoff, William
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.233-249
    • /
    • 2009
  • Safe installation and operation of high-pressure composite cylinders for hydrogen storage are of primary concern. It is unavoidable for the cylinders to experience temperature variation and significant thermal input during service. The maximum failure pressure that the cylinder can sustain is affected due to the dependence of composite material properties on temperature and complexity of cylinder design. Most of the analysis reported for high-pressure composite cylinders is based on simplifying assumptions and does not account for complexities like thermo-mechanical behavior and temperature dependent material properties. In the present work, a comprehensive finite element simulation tool for the design of hydrogen storage cylinder system is developed. The structural response of the cylinder is analyzed using laminated shell theory accounting for transverse shear deformation and geometric nonlinearity. A composite failure model is used to evaluate the failure pressure under various thermo-mechanical loadings. A back-propagation neural network (NNk) model is developed to predict the maximum failure pressure using the analysis results. The failure pressures predicted from NNk model are compared with those from test cases. The developed NNk model is capable of predicting the failure pressure for any given loading condition.

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

Changes of Corrective Astigmatism Values Depending on Position of Circle of Least Confusion in Astigmatic Refining Test Using Cross Cylinder (크로스실린더를 이용한 난시정밀검사에서 검사 전 최소착란원 위치에 따른 난시교정값의 변화)

  • Kim, Sang-Yeob;Lee, Min Jae;Lee, Kang Cheon;Lee, Tae Hui;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.349-354
    • /
    • 2015
  • Purpose: To investigate the changes of corrective values of astigmatism caused by the position of circle of least confusion on retina in refining astigmatic test using cross cylinder. Methods: 62 subjects (115 eyes) aged $22.24{\pm}2.48$ years participated for this study. After astigmatic test using a radial chart, refining test was performed using a cross cylinder in a condition of maximum plus to maximum visual acuity (MPMVA). Astigmatic refining test was repeatedly performed in each condition of which S+0.75 D, S+0.50 D, S+0.25 D, S-0.25 D, S-0.50 D, and S-0.75 D are added to spherical lenses of MPMVA. The measured values were compared with the values in MPMVA condition. Results: As compared with values in condition of MPMVA, change of astigmatic axis was increased with add the power of (+) spherical lenses and (-) spherical lenses. In same spherical condition, change of astigmatic axis was decreased with increment of astigmatic power (p<0.05). The corrective power of astigmatism was reduced with increment of (+) spherical lenses (p<0.05), and was raised with increment of (-) spherical lenses compared with the power in MPMVA condition. In case of adding (+) spherical lenses, difference of astigmatic power increased with increment of corrective astigmatism power in same test condition. Conclusions: In order to obtain a proper values for corrective astigmatism, position of circle of least confusion should be accurately adjusted before the performing an astigmatism's refining test.

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

The Problem of Engine Friction Test by Strip Down Method (스트립 다운에 의한 엔진 마찰 시험의 문제점)

  • Cho, Myung-Rae;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2429-2435
    • /
    • 2002
  • The aim of this paper is to investigate the problem of strip down method, which is usually used to evaluate the engine friction level. The validity of strip down method was investigated by theoretical analysis of friction in crank and piston assembly. The friction of cylinder and piston assembly was analyzed under the various test conditions. The measured cylinder pressure was used as boundary conditions of friction torque and loss calculation. The friction loss of crank and piston assembly was influenced by test conditions that resulted from the variation of load condition. From the results, we have known that the strip down method could be possible to distort the friction loss of engine moving components.

Cracking Behavior of Prestressed Concrete Cylinder Pipe (프리스트레스트 콘크리트 실린더의 균열거동 연구)

  • Chung, Chul-Hun;Kim, Jong-Suk;Song, Na-Young
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • The cracking behavior of prestressed concrete members is important for the rational evaluation of PCC pipes. However, the test data on the cracking behavior of PCC pipes are very limited. The purpose of the present study is to investigate the cracking behavior of PCC pipes under different settlement conditions. In this paper, experimental test on the full scale model of PCC pipe was conducted and observed in order to study cracking load in PCC pipes. Based test and FEM analysis results, this paper also presents the cracking load prediction in PCC pipe. Based on the numerical analysis results performed in this research, the cracking behaviors of PCC pipe with the variation of the settlement conditions were evaluated.

A Study on the Strength Estimation Formular of the Precast Concrete Products Using the Chloride Ion Penetrating Test (염소이온투과시험을 이용한 콘크리트제품의 강도추정에 관한 연구)

  • 장문기;이정재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.146-149
    • /
    • 1998
  • In this study, the chloride ion penetration test and the compressive strength test should be done simultaneously on the standard cylinder specimen. And from analyzing the data from those tests, a strength estimation equation with high credibility is to be developed.

  • PDF

Test and Analysis of Thermal Ratcheting Deformation for 316L Stainless Steel Cylindrical Structure (316L 스테인리스강 원통 구조물의 열라체팅 변형 시험 및 해석)

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Lee, Jae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.479-486
    • /
    • 2002
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 55$0^{\circ}C$ with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests.

Effects of Downstream Cylinder by Changing Upstream Object's Diameter (상류에 있는 물체의 직경변화에 따라 후류 물체가 받는 영향)

  • Kim, Sang Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.859-864
    • /
    • 2014
  • This experimental study investigates the effects of a downstream cylinder in the wake change on upstream object's diameter. A V-shaped object is placed in the upstream of the test section and a circular cylinder containing a load-cell is placed in the downstream. The velocity distribution of the wake generated from the upstream object with a change in its diameter is investigated. Further, the fluctuation in the lift coefficient and Karman-vortex emission frequency with a change in the position of the downstream cylinder is examined. The study results reveal the following. i) The flow velocity in the wake is smaller than that in the main stream. ii) The lock-in phenomenon occurs when the diameter of the upstream object is larger than that of the downstream cylinder. iii) To generate maximum fluctuating lift force of the downstream cylinder in the wake, the position of the downstream cylinder must be moved with changing diameter of the upstream object together.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF