• Title/Summary/Keyword: cyclophosphazene

Search Result 7, Processing Time 0.018 seconds

Flame Retardants Containing Cyclophosphazene Ring for ABS (Cyclophosphazene 고리를 갖는 ABS용 난연제)

  • Shin, Young-Jae;Shin, Youn-Rok;Park, Soo-Jin;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.273-277
    • /
    • 2007
  • Cyclophosphazene derivatives were synthesized in order to use as a non-halogen flame retardant for ABS. Chlorocyclophosphazene was reacted with phenol, catechol, aniline, 1,2-diaminobenzene respectively, and each product was characterized by UL94 and LOI test for ABS resin. The physical properties of the sample containing these flame retardants were also characterized. The derivative synthesized from catechol showed best flame retardancy, and the derivative from phenol exhibited the flame retardancy in which the synergic effect was shown with novolac.

Synthesis of Flame Retardants for ABS using Cyclophosphazene (Cyclophosphazene을 이용한 ABS용 난연제의 합성)

  • Shin, Young-Jae;Kim, Hae-Young;Shin, Jae-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2007
  • Non-halogen flame retardant have been focus of extensive research because of environmental problem. Hexakisphenokycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, bisphenol S, and resorcinol, the polymers which contained cyclophosphazene structure were synthesized in order to also use as the flame retardants of ABS resin. All of the synthesized polymers themselves got the excellent flame retardancy. And as the molecular weight of the compound were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardants for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin. In case of using resorcinol, it showed the best flame retardancy.

Durable Flame-Retardant Finish of Cotton Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용해성 사이클로포스파젠 유도체를 이용한 면섬유의 내구성 방염가공)

  • Kim, Jeong-Hwan;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Large amount of formaldehyde could be released inevitably during the flame-retardant (FR) treatments or from the finished fabrics using Provatex reagent and Proban polymers which have been used as durable FRs for cotton. A water-soluble cyclophosphazene derivative was synthesized as an ecofriendly phosphorus-based FR for cotton fibers. Dichloro tetrakis{N-[3-(Dimethylamino)propyl]methacrylamido} cyclcophosphazene (DCTDCP) was synthesized through the substiutution reaction of Hexachloro cyclophosphazene and N-[3-(Dimethylamino)propyl] methacrylamide at a mole ratio of 1 : 4, which can be cured dually by both alkaline treatment and UV irradiation. More crosslinked networks were produced through the addition of Triacryloyl hexahydrotriazine and Acrylamide as a UV-curable crosslinker and a comonomer respectively. Both flame retardancy and washing durability of the FR cotton were improved synergistically. The durability improvement may be caused by the covalent bond formation of the FR with cellulose and the high degree of polymerization of DCTDCP, which can be verified by the pyrolysis and combustion behaviors analyzed by LOI, TGA, and microcalorimeter.

Eco-friendly Durable Flame-Retardant Finish of Wool Fabrics Using a UV-curable Cyclophosphazene Derivative (광경화형 사이클로포스파젠 유도체를 이용한 양모섬유의 친환경 내구성 방염가공)

  • Baek, Ji-Yun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.230-237
    • /
    • 2021
  • The flame-retardant (FR) treatments of wool fibers using Hexafluorozirconate/titanate salts and tetrabromophthalic anhydride can cause skin irritation and gas toxicity due to Zr and Br compounds respectively. A water-soluble polyfunctional cyclophosphazene derivative, synthesized through substitution reaction of Hexachloro cyclophosphazene and N-[3-(Dimethylamino)propyl] metacrylamide, was applied as a durable flame-retardant for wool fabrics. Also, a crosslinked structure was introduced to improve washing durability of the FR-wool, up to 10 laundering cycles, using Acrylamide(AAm) and Triacryloylhexahydrotriazine (TAHT) as a comonomer and a crosslinker respectively. The mole ratios of the TAHT and AAm concentrations compared to the Dichloro tetrakis{N-[3-(Dimethylamino)propyl]methacrylamido} cyclcophosphazene (DCTDCP) were optimized to 1.33 and 7.5 respectively. In addition, the pyrolysis and combustion properties of the FR wool were assessed using LOI, TGA and microcalorimetry suggesting a solid-phase FR mechanism.

Dual-curable Flame-Retardant Finish of Silk Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용성 Cyclcophosphazene 유도체를 이용한 견섬유의 이중경화형 방염가공)

  • Kim, Jeong-Hwan;Baek, Ji-Yun;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.217-223
    • /
    • 2022
  • Flame-retardant finished silk fabrics could release carcinogenic formaldehyde resulting from the conventional finishing agents. New water-soluble cyclophosphazene derivative can be used as a formaldehyde-free flame retardant for the silk protein. Dichloro tetrakis{N-[3-dimethylamino)propyl]methacrylamido}cyclophosphazene(DCTDCP) can be cured by heat or UV irradiation as a durable flame retardant for the silk fabrics. Treatment conditions were optimized including curing temperature and time, finishing formulations, and UV energy. At the 30% DCTDCP application, peak HRR and THR decreased by 42.6% and 49.6% respectively compared to the pristine silk fabrics. Also char residue increased up to 48% from 11% indicating solid-phase retarding mechanism. The flame-retardant silk fabrics showed a LOI of 31.1 and the washed sample maintained a LOI of 26.8 even after ten laundering cycles.

Preparation and Characterization of Vesicles Using Octasubstituted Cyclotetraphosphazene

  • Shin, Young-Jae;Park, Chul-Soon;Lee, Chun-Il;Shin, Jae-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2005-2008
    • /
    • 2008
  • A cyclotetraphosphazene derivative with eight chains was synthesized from octachlorocyclotetraphosphazene. The vesicles were prepared using the cyclotetraphosphazene derivative and cholesterol. The resulting vesicles were characterized by TEM and measurements of their encapsulation efficiency. The stability of the vesicles was enhanced with the addition of dihexadecylphosphate. The size and the encapsulation efficiency of the vesicles changed according to the amount of cholesterol added. The size and the encapsulation efficiency of the vesicle were lowest when the mole ratio (cholesterol: the cyclophosphazene derivative) was 0.9.

Formaldehyde-Free Durable Flame-Retardant Finish of Cotton Using Hexachlorocyclophosphazene and Triethanolamine (Hexachlorocyclophosphazene과 Triethanolamine을 이용한 면섬유의 포름알데히드-프리 내구성 방염가공)

  • Kim, Jeong-Hwan;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.150-157
    • /
    • 2020
  • Hexachloro-cyclophosphazene(HCCP), a formaldehyde-free flame retardant (FR), was steam-cured with triethanol amine(TEA) to impart durable flame-retardancy to cotton fabrics. While the HCCP treatment alone showed very limited resistance to repeated laundering cycles, the addition of TEA substantially improved the laundering durability of the FR cotton up to twenty laundering cycles. The extended washing resistance was accomplished by the increased nucleophilic substitution of unreacted P-Cl groups in HCCP by the TEA resulting in the more densely crosslinked FR networks. With increasing molar ratio of TEA to the HCCP up to 2, the flame retarding effectivity and the synergistic effectiveness improved to 2.8 and 1.8 respectively. TGA and microscale combustion calorimetry verified the pyrolysis and combustion behaviors of the FR-cotton, which showed lower maximum pyrolysis and combustion temperatures together with substantially decreased peak pyrolysis and heat release rate, synergistically yielding larger amounts of carbonaceous chars. The formaldehyde-free HCCP and TEA can be a durable FR finishing agents for cotton fabrics acting through a solid-phase flame-retarding mechanism.