• Title/Summary/Keyword: cycloalkane

Search Result 5, Processing Time 0.023 seconds

Studies on the Constituents of Chenopodium acuminatum (버들명아주의 성분(成分)에 관한 연구(硏究))

  • Kim, Chong-Won;Lee, Kyoung-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.4
    • /
    • pp.206-209
    • /
    • 1985
  • White needle crystalline compound, mp.\;78{\sim}79$, was isolated from the petroleum ether fraction of the aerial parts of Chenopodium acuminatum. This compound was supposed to be cycloalkane by chemical properties, spectral data and elemental analysis. After extraction with petroleum ether, the methanolic extract of this plant found to contain aspartic acid, threonine, serine, glutamic acid, glycine, cystine, valine, isoleucine, tyrosine, and phenylalanine. Inorganic elements contained in this plant are as following: Mg 4.84%, Ca 9.602%, Zn 1.11%, K 29.104%, Mn 5.124%, Fe 27.039%, Co 0.31%, Pb 0.995%, Na 0.039% and Cu, 0.0076%.

  • PDF

Hydroxylation of Cycloalkanes Catalyzed by In(III)-, Tl(III)-Porphyrin (In(III)-, Tl(III)-porphyrin을 촉매제로 한 시클로알칸의 히드록시화 반응)

  • Na, Hun-Gil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • The catalytic hydroxylation of several cycloalkanes in dichloromethane have been investigated using In(Ⅲ)-, Tl(Ⅲ)-porphyrin complexes as a catalyst and NaClO, $NaClO_{2}$, $H_{2}O_{2}$ as a terminal oxidant. Porphyrins were TPP and ($F_{20}$)TPP (TPP = tetraphenylporphyrin) and substrates were cyclopentane, cyclohexane, cycloheptane and cyclooctane. The substrate conversion yield was discussed according to the substituent effect and hinderance effect of metalloporphyrin and the radius effect of non-redox metal ion. The conversion yield of cycloalkane followed the order of $ C_{5} $ < $ C_{6}$ < $ C_{7}$ = $ C_{8}$. In this experimental condition $NaClO_2$ was rather efficient terminal oxidant than NaClO and $H_{2}O_{2}$.

Influence of VOCs Structure on Catalytic Oxidation Kinetics (휘발성 유기화합물(VOCs)의 촉매산화 전환에서 결합구조의 영향 및 속도특성)

  • 이승범;윤용수;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.44-51
    • /
    • 2000
  • The reactivity of a range of volatile organic compounds with differing functional groups observed over 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. In general, the reactivity pattern observed was alcohols > aromatics > ketones > cycloalkane > alkanes. The deep conversion was increased as reaction temperature was increased. A correlation was found between the reactivity of the individual and the strength of the weakest C-Hbond in structure. The conversion of volatile organic compounds increases in order methanol > benzene > cyclohexane > MEK > n-hexane. That is the effect of differences in total dissociation energy. An apparent zeroth-order kinetics with respect to inlet concentration have been observed. A simple multicomponent model based on two-stage redox model made reasonably good predictions of conversion over the range of parameters studied. thus, the catalytic process was suggested as the new VOCs control technology.

  • PDF

Characteristics of Wasted Lubricant Degradation by Acinebobacter lwoffii 16C-1

  • Kim, Gab-Jung;Lee, In-Soo;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.76-81
    • /
    • 1999
  • 216 microorganisms which able to degrade wasted lubricant were isolated in the region of contaminated with wated lubricant such automobile repair shops, garages and gas stations in Taejon. Most activated strain among them is selected and used in this research. The microorganism in identified as Acinetobacter lwoffii 16C-1, which shows active growth and hydrocargon utilization withnormal alkane such as tetradecane, hexadecane and octadecane, and do not grow aromatic hydrocargons, cycloalkane, and branched alkane. In addition, A. lwoffii 16C-1 has resistance to heavy metals such as Ba, Li, Cr, and Mn more than 6.4mg/ml, and showed negligible tolerance against antibiotics. Effects of environmental conditions including concentration of wasted lubricnt, pH, NaCl concentration, nitrogen source and phosphate on microorganism growth and emulsification were studied. 2% of wasted lubricant, pH 7.0, 0-1% of NaCl, 0.2% of peptone, and 0.01% of K2HPO4 is turn out to be optimum condition. By the analysis of remaining oils, almost of hydrocarbons added to the media are removed by A. lwoffii 16C-1 at 30$^{\circ}C$ after 2 days of culture, which showed excellent oil degradation characteristics.

Evaluation of Distribution Characteristics for Petroleum Hydrocarbon in Groundwater by TPH Fraction Analysis (석유계 총 탄화수소(Total Petroleum Hydrocarbons, TPH) 분획분석법을 이용한 지하수 중 유류오염물질 분포특성 평가)

  • Kim, Deok Hyun;Park, Sunhwa;Choi, Min-Young;Kim, Moonsu;Yoon, Jong Hyun;Lee, Gyeong-Mi;Jeon, Sang-Ho;Song, Dahee;Kim, Young;Chung, Hyen Mi;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.26-36
    • /
    • 2018
  • Total petroleum hydrocarbon (TPH) is a mixture of various oil substances composed of alkane, alkene, cycloalkane, and aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene, etc.). In this study, we investigated 92 groundwater wells around 36 gas stations to evaluate distribution characteristics of petroleum hydrocarbons. Groundwater in the wells was sampled and monitored twice a year. The fraction analysis method of TPH was developed based on TNRCC 1006. The test results indicated aliphatic and aromatic fractions accounted for 28.6 and 73.8%, respectively. The detection frequencies of TPH in the monitoring wells ranged in 21.6 - 24.2%. The average concentration of TPH was 0.11 mg/L with the concentration range of 0.25~0.99 mg/L. In the result of TPH fraction analysis, in aliphatic fractions were 19% (C6-C8 : 0.2%, C8-C10 : 0.4%, C10-C12 : 0.4%, C12-C16 : 0.5%, C16-C22 : 1.0%, C22-C36 : 16.6%), and aromatic fractions were 81% (C6-C8 : 1.1%, C8-C10 : 0%, C10-C12 : 2.9%, C12-C16 : 0.3%, C16-C22 : 4%, C22-C36 : 66.8%). Fractions of C22-C36 were detected in about 83% of the monitoring wells, suggesting non-degradable characteristics of hydrocarbons with high carbon content.