• Title/Summary/Keyword: cyclin D

Search Result 345, Processing Time 0.025 seconds

Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells

  • Cruz, Joseph Flores dela;Kim, Yeon Soo;Lumbera, Wenchie Marie Lara;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6417-6421
    • /
    • 2015
  • Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.

Up-regulation of Matrix Metalloproteinase-9 in Smooth Muscle Cell Undergoing Death (사멸세포에서의 metalloproteinase-9의 작용)

  • Lee, Kyeong-Ah;Kim, Sun-Mi;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1229-1234
    • /
    • 2006
  • This study investigated whether matrix metalloproteinases (MMPs) can be modified in apoptotic smooth muscle cell (SMC) using the SMC that undergoes apoptotic death by expressing Fas-associated death domain containing protein (FADD) when they are grown without tetracycline in culture medium. In the absence of tetracycline, FADD-SMC lost adherence and showed the fragmentation of the nuclei. In proportion to duration of tetracycline removal, phosphorylated form of p38 MAPK and of ERK increased, whereas phosphorylation of protein kinase B (PKB) was not changed very much in response to tetracycline The levels of cyclin A and cyclin D were also decreased in a time dependent manner. Up-regulation of MMP-9 expression and activity was observed when the SMC were grown without tetracycline. Immunoreactivity of MMP-9 was detected from both attached and floating FADD-SMCs grown without tetracycline. An inhibitor of MAPK kinase, PD098059, and an inhibitor of p38 MAPK, SB203580, inhibited the up-regulation of MMP-9. Treatment of the SMC with a synthetic MMP inhibitor, BB94, attenuated death occurring in the absence of tetracycline. These results indicate that SMC undergoing death is able to up-regulate MMP-9 and that the enzyme can affect cell viability.

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells

  • Ji, Ai-Jun;Liu, Sheng-Lin;Ju, Wen-Zheng;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3581-3586
    • /
    • 2014
  • Aim: To investigate the effects of tetramethypyrazine (TMP) on proliferation and apoptosis of the human gastric carcinoma cell line 7901 and its possible mechanism of action. Methods: The viability of TMP-treated 7901 cells was measured with a 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and cell apoptosis was analyzed by flow cytometry. The distribution of cells in different phases of cell cycle after exposure of TMPs was analyzed with flow cytometry. To investigate the molecular mechanisms of TMP-mediated apoptosis, the expression of NF-${\kappa}Bp65$, cyclinD1 and p16 in SGC-7901 cells was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results: TMP inhibited the proliferation of human gastric carcinoma cell line 7901 in dose and time dependent manners. Cell growth was suppressed by TMP at different concentrations (0.25, 0.5, 1.0, 2.0 mg/ml), the inhibition rate is 0.46%, 4.36%, 14.8%, 76.1% (48h) and 15.5%, 18.5%, 41.2%, 89.8% (72h) respectively. When the concentration of TMPs was 2.0mg/ml, G1-phase arrest in the SGC-7901 cells was significant based on the data for cell cycle distribution. RT-PCR demonstrated that NF-${\kappa}Bp65$ and cyclin D1 mRNA expression was significantly down-regulated in 7901 cells treated with 2.0 mg/ml TMP for 72h (p<0.05), while the p16 mRNA level was up-regulated (p<0.05). The protein expression of NF-${\kappa}Bp65$ and cyclin D1 decreased gradually with the increase in TMP concentration, compared with control cells (p<0.05), while expression of protein p16 was up-regulated (p<0.01). Conclusion: TMP exhibits significant anti-proliferative and pro-apoptotic effects on the human gastric carcinoma cell line SGC-7901. NF-${\kappa}Bp65$, cyclinD1 and p16 may also play important roles in the regulation mechanisms.

Ozone Inhalation with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)- 1-butanone and/or Dibutyl Phthalate Induced Cell Cycle Alterations via Wild-type p53 Instability in B6C3F1 Mice

  • Kim, Min-Young;Song, Kyung-Suk;Park, Gun-Ho;Kim, Hyun-Woo;Park, Jin-Hong;Kim, Jun-Sung;Jin, Hwa;Kook-Jong, Eu;Cho, Hyun-Sun
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.71-82
    • /
    • 2004
  • Changes in cell cycle control in the lungs and liver of the B6C3F1 mice (20 males per each group) exposed to ozone (0.5 ppm), 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1.0 mg/kg), and dibutyl phthalate (DBP, 5,000 ppm) after 52 weeks were examined through Western, Northern blot, and immunohistochemistry based on alterations in protein expression levels of G1/S checkpoints (cyclin D1, cyclin E, and PCNA), G2/M checkpoints (cyclin B1, cyclin G, and cyclin A), negative regulators (p53, p21, GADD45, and p27), and positive regulator (mdm2). Expression levels of cyclins D1, E, G, PCNA, mutant p53, and mdm2 proteins were higher in the lungs and livers treated with combination of toxicants than in those treated with ozone only. Expression levels of the wild-type and mutant p53, p21, GADD45, p27, and mdm2 proteins and mRNAs were higher in toxicant-treated groups than those of the control. Immunohistochemical analysis revealed staining intensities of the PCNA, cyclin D1, c-myc and mdm2 protein- treated lungs and livers were stronger than those of the control group. Our results showed that combined treatment of ozone with NNK/DBP altered the cell cycle control through instability of the wild-type p53 gene. Such pivotal p53-mediated cell cycle alterations may be responsible for the toxicity observed under our experimental condition. These results may be applied to risk assessment of mixture-induced toxicity.

An Experimental Study on Apoptosis of Cultivated Wild Ginseng Distilled Herbal Acupuncture by controlled pH and Electrolyte (pH 및 전해질 조절 산양산삼(山養山蔘) 증류약침(蒸溜藥鍼)의 Apoptosis에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chu, Ching sheng;Lee, Sun-gu;Kwon, Ki-rok
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.1-17
    • /
    • 2004
  • Objective : To compare and examine how adjustment of pH and electrolyte can affect the efficacy of cultivated wild ginseng distilled herbal acupuncture, we've administered pure cultivated wild ginseng distilled herbal acupuncture and pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture on A549 human lung cancer lines. Then mRNA and proteins which take parts in apoptosis were examined. Methods : Pure cultivated wild ginseng distilled herbal acupuncture treated group was set as the control group and pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture groups were administered on A549 human lung cancer lines. Cell toxicity was carefully examined and from the analysis of DNA fragmentation, RT-PCR, and Western blot, manifestation of mRNA and proteins which are associated with apoptosis were inspected. Results : The following results were obtained on apoptosis of A549 human lung cancer lines after administering pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture. 1. Measuring cell toxicity of lung cancer cells, higher cell toxicity was detected at pH and electrolyte adjusted groups and the results were concentration dependent. 2. Through DNA fragmentation, we were able to confirm cell destruction in all groups. 3. Experiment groups treated with cultivated wild ginseng distilled herbal acupuncture showed inhibition of Bcl-2 and COX-2 at mRNA and Protein level, whileas increase of Bax was shown. 4. Manifestation of p21, p53, Cyclin E, and Cyclin D1 were confirmed in all groups. 5. Extrication of Cytochrome C was detected at all groups, as well as increased activity of the enzyme caspase-3 and caspase-9, and PARP fragmentation were confirmed. Conclusions : From the above results, we can carefully deduce cell destruction of A549 human lung cancer lines were induced by Apoptosis. At the same concentration level, cell destruction efficacy was better with adjusted pH and electrolyte. Cultivated wild ginseng distilled herbal acupuncture also showed decrease of Bcl-2 and COX-2, as well as increase of Bax. Since cultivated wild ginseng distilled herbal acupuncture increases manifestation of p21, p53, Cyclin E, and Cyclin D1, it affects cellular cycle and through these phenomena, we can consider extrication of Cytochrome C, increase of caspase, and PARP fragmentation are the results.

  • PDF

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.

TSPAN12 Precedes Tumor Proliferation by Cell Cycle Control in Ovarian Cancer

  • Ji, Guohua;Liang, Hongbin;Wang, Falin;Wang, Nan;Fu, Songbin;Cui, Xiaobo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.557-567
    • /
    • 2019
  • TSPAN12, a member of the tetraspanin family, has been highly connected with the pathogenesis of cancer. Its biological function, however, especially in ovarian cancer (OC), has not been well elucidated. In this study, The Cancer Genome Atlas (TCGA) dataset analysis revealed that upregulation of TSPAN12 gene expression was significantly correlated with patient survival, suggesting that TSPAN12 might be a potential prognostic marker for OC. Further exploration showed that TSPAN12 overexpression accelerated proliferation and colony formation of OVCAR3 and SKOV3 OC cells. Knockdown of TSPAN12 expression in A2780 and SKOV3 cells decreased both proliferation and colony formation. Western blot analysis showed that several cyclins and cyclin-dependent kinases (CDK) (e.g., Cyclin A2, Cyclin D1, Cyclin E2, CDK2, and CDK4) were significantly involved in the regulation of cell cycle downstream of TSPAN12. Moreover, TSPAN12 accelerated mitotic progression by controlling cell cycle. Thus, our data demonstrated that TSPAN12 could be a novel molecular target for the treatment of OC.

Heme Oxygenase-l Induced by Aprotinin Inhibits Vascular Smooth Muscle Cell Proliferation Through Cell Cycle Arrest in Hypertensive Rats

  • Choi, Hyoung-Chul;Lee, Kwang-Youn;Lee, Dong-Hyup;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.309-313
    • /
    • 2009
  • Spontaneous hypertensive rats (SHR) are an established model of genetic hypertension. Vascular smooth muscle cells (VSMC) from SHR proliferate faster than those of control rats (Wistar-Kyoto rats; WKY). We tested the hypothesis that induction of heme oxygenase (HO)-1 induced by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats. Aprotinin treatment inhibited VSMC proliferation in SHR more than in normotensive rats. These inhibitory effects were associated with cell cycle arrest in the G1 phase. Tin protoporphyrin IX (SnPPIX) reversed the anti-proliferative effect of aprotinin in VSMC from SHR. The level of cyclin D was higher in VSMC of SHR than those of WKY. Aprotinin treatment downregulated the cell cycle regulator, cyclin D, but upregulated the cyclin-dependent kinase inhibitor, p21, in VSMC of SHR. Aprotinin induced HO-1 in VSMC of SHR, but not in those of control rats. Furthermore, aprotinin-induced HO-1 inhibited VSMC proliferation of SHR. Consistently, VSMC proliferation in SHR was significantly inhibited by transfection with the HO-1 gene. These results indicate that induction of HO-1 by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats.